Grüss Type k-Fractional Integral Operator Inequalities and Allied Results
Main Article Content
Abstract
This paper aims to derive fractional Grüss type integral inequalities for generalized k-fractional integral operators with Mittag-Leffler function in the kernel. Many new results can be deduced for several integral operators by giving specific values to the parameters involved in Mittag-Leffler function. Moreover, the results of this paper reproduce a lot of already published results.
Article Details
References
- M. Andrić, G. Farid, J. Pečarić, A Further Extension of Mittag-Leffler Function, Fract. Calc. Appl. Anal. 21 (2018), 1377–1395. https://doi.org/10.1515/fca-2018-0072.
- M. Andrić, G. Farid, S. Mehmood et al. Pólya-Szegö and Chebyshev Types Inequalities via an Extended Generalized Mittag-Leffler Function, Math. Inequal. Appl. 22 (2019), 1365–1377. https://doi.org/10.7153/mia-2019-22-94.
- M. Andrić, G. Farid, J. Pečarić, Analytical Inequalities for Fractional Calculus Operators and the Mittag-Leffler Function: Applications of Integral Operators Containing an Extended Generalized Mittag-Leffler Function in the Kernel, Element, Zagreb, 2021.
- H. Chen, U.N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér Type Inequalities for Generalized Fractional Integrals, J. Math. Anal. Appl. 446 (2017), 1274–1291. https://doi.org/10.1016/j.jmaa.2016.09.018.
- G. Farid, A.U. Rehman, V.N. Mishra, et al. Fractional Integral Inequalities of Gruss Type via Generalized MittagLeffler Function, Int. J. Anal. Appl. 17 (2019), 548–558. https://doi.org/10.28924/2291-8639-17-2019-548.
- G. Farid, Bounds of Fractional Integral Operators Containing Mittag-Leffler Function, U.P.B. Sci. Bull., Ser. A, 81 (2019), 133–142.
- G. Grüss, Über das Maximum des Absolten Betrages von 1 b−a R b a f (x)g(x)dx − 1 b−a 2 R b a f (x)dx R b a f (x)dx, Math. Z. 39 (1935), 215–226.
- S. Habib, G. Farid, S. Mubeen, Gru¨ss Type Integral Inequalities for a New Class of k-Fractional Integrals, Int. J. Nonlinear Anal. Appl. 12 (2021), 541–554. https://doi.org/10.22075/ijnaa.2021.4836.
- S. Habib, S. Mubeen, M.N. Naeem, Chebyshev Type Integral Inequalities for Generalized k-Fractional Conformable Integrals, J. Inequal. Spec. Funct. 9 (2018), 53–65.
- F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu, On a New Class of Fractional Operators, Adv. Differ. Equ. 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z.
- E. Kacar, Z. Kacar, H. Yildirim, Integral Inequalities for Riemann-Liouville Fractional Integrals of a Function with Respect to Another Function, Iran. J. Math. Sci. Inform. 13 (2018), 1–13.
- E. Kacar, H. Yildirim, Gruss Type Integral Inequalities for Generalized Riemann-Liouville Fractional Integrals, Int. J. Pure Appl. Math. 101 (2015), 55–70. https://doi.org/10.12732/ijpam.v101i1.6.
- T.U. Khan, M.A. Khan, Generalized Conformable Fractional Operators, J. Comput. Appl. Math. 346 (2019), 378–389. https://doi.org/10.1016/j.cam.2018.07.018.
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, NorthHolland Mathematics Studies, 204, Elsevier, Amsterdam, 2006.
- Y.C. Kwun, G. Farid, W. Nazeer, S. Ullah, S.M. Kang, Generalized Riemann-Liouville k -Fractional Integrals Associated With Ostrowski Type Inequalities and Error Bounds of Hadamard Inequalities, IEEE Access. 6 (2018), 64946–64953. https://doi.org/10.1109/access.2018.2878266.
- S. Mehmood, G. Farid, K.A. Khan, M. Yussouf, New Fractional Hadamard and Fejér-Hadamard Inequalities Associated With Exponentially (h, m)-Convex Function, Eng. Appl. Sci. Lett. 3 (2020), 9–18.
- S. Mubeen, S. Iqbal, Gru¨ss Type Integral Inequalities for Generalized Riemann-Liouville k-Fractional Integrals, J. Inequal. Appl. 2016 (2016), 109. https://doi.org/10.1186/s13660-016-1052-x.
- S. Mubeen, G. M. Habibullah, k-Fractional Integrals and Applications, Int. J. Contemp. Math. Sci. 7 (2012), 89–94.
- D.S. Mitrinović, J.E. Pečarić, A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, (1993).
- S.D. Purohit, N. Jolly, M.K. Bansal, et al. Chebyshev Type Inequalities Involving the Fractional Integral Operator Containing Multi-Index Mittag-Leffler Function in the Kernel, Appl. Appl. Math. 15 (2020), 29–38.
- T.R. Prabhakar, A Singular Integral Equation With a Generalized Mittag-Leffler Function in the Kernel, Yokohama Math. J. 19 (1971), 7–15.
- S. Rashid, F. Jarad, M.A. Noor, K.I. Noor, D. Baleanu, J.B. Liu, On Grüss Inequalities Within Generalized KFractional Integrals, Adv. Differ. Equ. 2020 (2020), 203. https://doi.org/10.1186/s13662-020-02644-7.
- S. Rashid, F. Safdar, A.O. Akdemir, M.A. Noor, K.I. Noor, Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function, J. Inequal. Appl. 2019 (2019), 299. https://doi.org/10.1186/s13660-019-2248-7.
- G. Rahman, K. Sooppy Nisar, F. Qi, Some New Inequalities of the Grüss Type for Conformable Fractional Integrals, AIMS Math. 3 (2018), 575–583. https://doi.org/10.3934/math.2018.4.575.
- G. Rahman, D. Baleanu, M. Al Qurashi, S.D. Purohit, S. Mubeen, M. Arshad, The Extended Mittag-Leffler Function via Fractional Calculus, J. Nonlinear Sci. Appl. 10 (2017), 4244–4253. https://doi.org/10.22436/jnsa.010.08.19.
- T.O. Salim, A.W. Faraj, A Generalization of Mittag-Leffler Function and Integral Operator Associated With Integral Calculus, J. Frac. Calc. Appl. 3 (2012), 1–13.
- H.M. Srivastava, Z. Tomovski, Fractional Calculus With an Integral Operator Containing a Generalized Mittag–leffler Function in the Kernel, Appl. Math. Comput. 211 (2009), 198–210. https://doi.org/10.1016/j.amc.2009.01.055.
- M.Z. Sarikaya, M. Dahmani, M.E. Kiris, F. Ahmad, (k, s)-Riemann-Liouville Fractional Integral and Applications, Hacettepe J. Math. Stat. 45 (2016), 77–89.
- J. Tariboon, S.K. Ntouyas, W. Sudsutad, Some New Riemann-Liouville Fractional Integral Inequalities, Int. J. Math. Math. Sci. 2014 (2014), 869434. https://doi.org/10.1155/2014/869434.
- Z. Zhang, G. Farid, S. Mehmood, C.Y. Jung, T. Yan, Generalized k-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions, Axioms. 11 (2022), 82. https://doi.org/10.3390/axioms11020082.
- Z. Zhang, G. Farid, S. Mehmood, K. Nonlaopon, T. Yan, Generalized k-Fractional Integral Operators Associated with Pólya-Szegö and Chebyshev Types Inequalities, Fractal Fract. 6 (2022), 90. https://doi.org/10.3390/fractalfract6020090.
- G. Farid, S. Mehmood, L. Rathour, L. N. Mishra, V. N. Mishra, Fractional Hadamard and Fejér-Hadamard Inequalities Associated With exp. (α, h − m)-Convexity, Dyn. Contin. Discr. Impuls. Syst. Ser. A: Math. Anal. 30 (2023), 353–367.
- G. Farid, S.B. Akbar, L. Rathour, L.N. Mishra, V.N. Mishra, Riemann-Liouville Fractional Versions of Hadamard inequality for Strongly m-Convex Functions, Int. J. Anal. Appl. 20 (2022), 5. https://doi.org/10.28924/2291-8639-20-2022-5.
- S.K. Paul, L.N. Mishra, V.N. Mishra, D. Baleanu, An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator, AIMS Math. 8 (2023), 17448–17469. https://doi.org/10.3934/math.2023891.