On Frames in Hilbert Modules Over Locally C∗-Algebras

Main Article Content

Roumaissae El Jazzar, Rossafi Mohamed


Frame is a fundamental notion in the study of vector spaces; they offer redundancy and flexibility, which favor their application in various fields of mathematics. This article aims to collect important results of frames in Hibert pro-C∗-modules: Frame, ∗-frame, ∗-K-frame, g-frame, ∗-gframe, ∗-K-g-frame, operator frame, ∗-operator frame, ∗-K-operator frames. We also prove some new notions.

Article Details


  1. L. Alizadeh, M. Hassani, On Frames for Countably Generated Hilbert Modules Over Locally C∗-Algebras, Commun. Korean Math. Soc. 33 (2018), 527–533. https://doi.org/10.4134/CKMS.C170194.
  2. M. Azhini, N. Haddadzadeh, Fusion Frames in Hilbert Modules Over Pro-C∗-Algebras, Int. J. Ind. Math. 5 (2013), 109–118.
  3. R.J. Duffin, A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer. Math. Soc. 72 (1952), 341–366.
  4. M. Fragoulopoulou, An Introduction to the Representation Theory of Topological ∗-Algebras, Schriftenreihe, Univ. Münster, 48 (1988), 1–81.
  5. M. Fragoulopoulou, Tensor Products of Enveloping Locally C∗-Algebras, Schriftenreihe, Univ. Münster, 21 (1997), 1–81.
  6. I. Daubechies, A. Grossmann, Y. Meyer, Painless Nonorthogonal Expansions, J. Math. Phys. 27 (1986), 1271–1283. https://doi.org/10.1063/1.527388.
  7. N. Haddadzadeh, G-Frames in Hilbert Modules Over Pro-C∗-Algebras, Int. J. Ind. Math. 9 (2017), 259–267.
  8. A. Mallios, Topological Algebras: Selected Topics, Elsevier, Amsterdam, (2011).
  9. A. Inoue, Locally C∗-Algebra, In: Memoirs of the Faculty of Science, Kyushu University, Series A, Mathematics, (1972).
  10. M. Joita, Hilbert Modules over Locally C∗-Algebras, Editura Universităţii din Bucureşti, Bucureşti, (2006).
  11. M. Joita, On Frames in Hilbert Modules over Pro-C∗-Algebras, Topol. Appl. 156 (2008), 83–92. https://doi.org/10.1016/j.topol.2007.12.015.
  12. Z.A. Moosavi, A. Nazari, On Stability of G-Frames in Hilbert Pro-C∗-Modules, Acta Math. Vietnam. 46 (2021), 149–161. https://doi.org/10.1007/s40306-020-00396-w.
  13. M. Naroei Irani, A. Nazari, *-Frames in Hilbert Modules over Pro-C∗-Algebras, J. Linear Topol. Algebra. 8 (2019), 1–10.
  14. N.C. Phillips, Inverse Limits of C∗-Algebras, J. Oper. Theory. 19 (1988), 159–195. https://www.jstor.org/stable/24714402.
  15. N. C. Phillips, Representable K-Theory for σ-C∗-Algebras, K-Theory. 3 (1989), 441–478. https://doi.org/10.1007/bf00534137.
  16. I. Raeburn, T. Shaun, Countably Generated Hilbert Modules, the Kasparov Stabilisation Theorem, and Frames in Hilbert Modules, Proc. Amer. Math. Soc. 131 (2003), 1557–1564.
  17. M. Rossafi, R. El Jazzar, S. Kabbaj, K-Operator Frame for Hom∗A(X), J. Math. Comput. Sci. 11 (2021), 8306– 8322. https://doi.org/10.28919/jmcs/6806.
  18. M. Rossafi, E. Roumaissae, K. Ali, ∗-K-Operator Frame for Hom∗A(X ), Eur. J. Math. Anal. 2 (2022), 4. https://doi.org/10.28924/ada/ma.2.4.
  19. Yu. I. Zhuraev, F. Sharipov, Hilbert Modules Over Locally C∗-Algebras, arXiv:math/0011053 [math.OA], (2001). https://doi.org/10.48550/arXiv.math/0011053.