Note on Type L-Functions of Euler Product of Second Degree
Main Article Content
Abstract
In this paper we are concerned with a special case of Euler functions. We shall study the Euler product of degree two (Type of L-Euler functions) and give some results. More precisely, we shall deal with some Dirichlet series associated with a class of arithmetic {an} under the condition that apapk = apk+1 + pαapk−1, provided p is prime, k≥1, and α is a fixed complex number. We will demonstrate that there is an Euler’s product for the Dirichlet series Σnan/ns. This result is important in analysis, especially in analytic number theory.
Article Details
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
- H. Cohn, Advanced Number Theory, Dover Publication, New York, 1962.
- H. Davenport, Multiplicative Number Theory, Lectures in Advanced Mathematics, Vol. 1, Markham, Chicago, 1967.
- P.G.L. Dirichlet, Lectures on Number Theory, History of Mathematics, Vol. 16, American Mathematical Society, Providence, R.I., 1999.
- N. Elkies, Introduction to Analytic Number Theory, Course Notes, Dover, 1962.
- G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1998.
- A.A. Karatsuba, Basic Analytic Number Theory, Springer, Berlin, 1993.
- K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Springer, New York, 1982.
- A.E. Ingham, The Distribution of Prime Numbers, Cambridge University Press, Cambridge, 1932.
- I. Niven, H.S. Zuckerman, H.L. Montgomery, An Introduction to the Theory of Numbers, Wiley, New York, 1991.
- A. Strömbergsson, Analytic Number Theory, Lecture Notes, Uppsala universitet, 2008.
- H.L. Montgomery, R.C. Vaughan, Multiplicative Number Theory I. Cambridge University Press, Cambridge, 2007.
- D. Zagier, Elliptic Modular Forms and Their Applications, in: K. Ranestad (Ed.), The 1-2-3 of Modular Forms, Springer, Berlin, Heidelberg, 2008: pp. 1–103. https://doi.org/10.1007/978-3-540-74119-0_1.
- L. Rousu, Modular Forms and Related Topics, PhD Thesis, Uppsala University, 2021.
- A. Cardoso, Arithmetical functions and Dirichlet series, Master Thesis, Universiade Do Porto, 2022.
- K. Matsumoto, H. Tsumura, Double Dirichlet Series Associated With Arithmetic Functions II, Kodai Math. J. 46 (2023), 10–30. https://doi.org/10.2996/kmj46102.
- R.Taylor, Galois Representations, In: Proceedings of ICM 2002, Vol. III, 1-3, 2002.
- T. Sunada, L-Functions in Geometry and Some Applications, in: K. Shiohama, T. Sakai, T. Sunada (Eds.), Curvature and Topology of Riemannian Manifolds, Springer Berlin Heidelberg, Berlin, Heidelberg, 1986: pp. 266– 284. https://doi.org/10.1007/BFb0075662.
- J. Cremona, The L-Functions and Modular Forms Database Project, Found. Comput. Math. 16 (2016), 1541–1553. https://doi.org/10.1007/s10208-016-9306-z.