Weighted Polynomial Approximation Error, Szegö Curve and Growth Parameters of Analytic Functions
Main Article Content
Abstract
The Szegö curve is denoted by SRo={z∈C: |ze1−z|=Ro, |z|≤1} and let HR be the class of functions analytic in GR but not in GR’ if R<R’, GRo=int SRo’, 0<Ro<R<1. In this paper we have studied growth parameters in terms of weighted polynomial approximation errors on SRo for the functions f∈HR having rapidly increasing maximum modulus so that the order of f(z) is infinite.
Article Details
References
- S.K. Bajpai, G.P. Kapoor, O.P. Juneja, On Entire Functions of Fast Growth, Trans. Amer. Math. Soc. 203 (1975), 275–298.
- S.N. Bernstein, Leçons sur les Propriétés Extrémales et la Meilleure Approximation des Fonctions Analytiques d’une Variable Réelle, Gauthier-Villars, Paris, 1926.
- P.B. Borwein, W. Chen, Incomplete Rational Approximation in the Plane, Constr. Approx. 11 (1995), 85–106.
- P. Henrici, Applied and Computational Complex Analysis, Vol. 2, John Wiley and Sons, New York, 1977.
- O.P. Juneja, Approximation of an Entire Function, J. Approx. Theory. 11 (1974), 343–349. https://doi.org/10.1016/0021-9045(74)90006-9.
- O.P. Juneja, G.P. Kapoor, S.K. Bajpai, On the (p, q)−Type and Lower (p, q)-Type of an Entire Function, J. Reine Angew. Math. 290 (1977), 180–190. https://doi.org/10.1515/crll.1977.290.180.
- G.P. Kapoor, A Study in the Growth Properties and Coefficients of Analytic Function, Ph.D. Thesis, Indian Institute of Technology, Kanpur, India, 1972.
- G.P. Kapoor, K. Gopal, On the Coefficients of Functions Analytic in the Unit Disc Having Fast Rates of Growth, Ann. Mat. 121 (1979), 337–349. https://doi.org/10.1007/bf02412011.
- H.S. Kasana, D. Kumar, On Approximation and Interpolation of Entire Functions With Index-Pair (p, q), Publ. Mat. 38 (1994), 255–267. https://www.jstor.org/stable/43736483.
- D. Kumar, A. Basu, Generalized Growth and Weighted Polynomial Approximation of Entire Function Solutions of Certain Elliptic Partial Differential Equation, J. Anal. (2023). https://doi.org/10.1007/s41478-023-00671-7.
- N.S. Landkof, Foundations of Modern Potential Theory, Springer, Berlin, 1972.
- G.G. Lorentz, Approximation by Incomplete Polynomials (Problem and Results), In: E.B. Saff, R.S. Varga, eds. Padé and Rational Approximation: Theory and Applications, pp. 289-302, Academic Press, New York, 1977.
- G.R. MacLane, Asymptotic Values of Holomorphic Functions, Rice University Studies, Houston, 1963.
- H.N. Mhaskar, E.B. Saff, Weighted Analogues of Capacity, Transfinite Diameter, and Chebyshev Constant, Constr. Approx. 8 (1992), 105–124. https://doi.org/10.1007/bf01208909.
- I.E. Pritsker, R.S. Varga, The Szegö curve, Zero Distribution and Weighted Approximation, Trans. Amer. Math. Soc. 349 (1997), 4085–4105.
- I.E. Pritsker, R.S. Varga, Weighted Polynomial Approximation in the Complex Plane, Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 38–44. https://doi.org/10.1090/S1079-6762-97-00021-8.
- A.R. Reddy, Best Polynomial Approximation to Certain Entire Functions, J. Approx. Theory. 5 (1972), 97–112. https://doi.org/10.1016/0021-9045(72)90032-9.
- J.R. Rice, The Degree of Convergence for Entire Functions, Duke Math. J. 38 (1971), 429–440. https://doi.org/10.1215/s0012-7094-71-03852-x.
- S.R.H Rizvi, A. Nautiyal, On the Approximation and Interpolation of an Analytic Function, Math. Student. 49 (1981), 281–290.
- E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer, Berlin, 1997.
- S.M. Shah, Polynomial Approximation of an Entire Function and Generalized Orders, J. Approx. Theory. 19 (1977), 315–324. https://doi.org/10.1016/0021-9045(77)90095-8.
- G. Szegö, Über line Eigenshaft der Exponentialreche, Sitzungsber, Berl. Math. Ges. 23 (1924), 50–64.
- R.S. Varga, On an extension of a result of S.N. Bernstein, J. Approx. Theory. 1 (1968), 176–179.
- J.L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Colloquium Publications, Vol. 20, American Mathematical Society, Providence, 1969.
- T.N. Winiarski, Approximation and Interpolation of Entire Functions, Ann. Polon. Math. 23 (1970), 259–273.