Approximation of Periodic Functions by Wavelet Fourier Series
Main Article Content
Abstract
This paper aims to examine the expansion of periodic functions using wavelet bases. M. Skopina [8] obtained a Wavelet analog of the classical Jackson’s theorem for trigonometric approximation. Our result generalizes the result of M. Skopina [8] and V. Karanjgaokar et al. [15].
Article Details
References
- A. Grossmann, J. Morlet, Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape, SIAM J. Math. Anal. 15 (1984), 723–736. https://doi.org/10.1137/0515056.
- L. Dengfeng, P. Silong, Characterization of Periodic Multiresolution Analysis and an Application, Acta Math. Sinica. 14 (1998), 547–554. https://doi.org/10.1007/bf02580413.
- I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conferences Series in Applied Mathematics, SIAM, Philadelphia, PA, (1992).
- J. Morlet, G. Arens, E. Fourgeau, D. Glard, Wave Propagation and Sampling Theory–Part I: Complex Signal and Scattering in Multilayered Media, GEOPHYSICS. 47 (1982), 203–221. https://doi.org/10.1190/1.1441328.
- J. Prestin, K.K. Selig, On a Constructive Representation of an Orthogonal Trigonometric Schauder Basis for C2π, in: J. Elschner, I. Gohberg, B. Silbermann (Eds.), Problems and Methods in Mathematical Physics, Birkhäuser, Basel, 2001: pp. 402–425. https://doi.org/10.1007/978-3-0348-8276-7_22.
- L. Debnath, Wavelet Transforms and Their Applications, Birkhäuser, Boston, 2002.
- L. N. Mishra, V. N. Mishra, K. Khatri, Deepmala, On the Trigonometric Approximation of Signals Belonging to Generalized Weighted Lipschitz W(L r , ξ(t))(r ≥ 1)− Class by Matrix (C 1 .Np) Operator of Conjugate Series of Its Fourier Series, Appl. Math. Comput. 237 (2014), 252–263. https://doi.org/10.1016/j.amc.2014.03.085.
- M. Skopina, Wavelet Approximation of Periodic Functions, J. Approx. Theory. 104 (2000), 302–329. https://doi.org/10.1006/jath.1999.3434.
- M. Skopina, Localisation Principle for Wavelet Expansion, Self Seminar System, In: Proceedings of the international Workshop, Dubna, (1999), 125–133.
- P. Chandra, Taylor means and functions from H(α, p) space, Jñanabha, 47 (2017), 17–30.
- R.A. DeVore, G.G.Lorentz, Constructive Approximation, Springer, New York, (1993).
- S. Lal, S. Kumar, Best Wavelet Approximation of Functions Belonging to Generalized Lipschitz Class Using Haar Scaling Function, Thai J. Math. 15 (2017), 409–419.
- S.E. Kelly, M.A. Kon, L.A. Raphael, Local Convergence for Wavelet Expansions, J. Funct. Anal. 126 (1994), 102–138. https://doi.org/10.1006/jfan.1994.1143.
- V. Karanjgaokar, N. Shrivastav, A Note on the Convergence of Wavelet Fourier Series, Trans. A. Razm. Math. Inst. 177 (2023), 77–83.
- V. Karanjgaokar, N. Shrivastav and S. Rahatgaonkar, On the rate of Convergence of Wavelet Fourier Series, Jñanabha, 51 (2021), 12–18. https://doi.org/10.58250/Jnanabha.2021.51102.
- V. Karanjgaokar, On the Rate of Convergence of Wavelet Expansion, J. Indian Math. Soc. 85 (2018), 100–110.
- V.N. Mishra, K. Khatri, L.N. Mishra, Deepmala, Trigonometric Approximation of Periodic Signals Belonging to Generalized Weighted Lipschitz W’(Lr, ξ(t)),(r ≥ 1)− Class by Nörlund-Euler (N, pn)(E, q) Operator of Conjugate Series of Its Fourier Series, J. Class. Anal. 5 (2014), 91–105. https://doi.org/10.7153/jca-05-08.
- Y. Meyer, Wavelets: Their Past and Their Future. In: Y. Meyer, S. Roques, (eds.) Progress in Wavelet Analysis and Applications, Toulouse, 1992, pp. 9–18. Frontieres, Gif-sur-Yvette, (1993).