Connectedness in Single-Valued Neutrosophic Soft Grill Topological Spaces
Main Article Content
Abstract
The incentive of this article is to continue discovering more interesting results and concepts related to the single-valued neutrosophic soft topological spaces. The concept of the single-valued neutrosophic soft operator φ created from a single-valued neutrosophic soft grill (Kσ, Kτ, Kδ) and a single-valued neutrosophic soft topological space (B, ~T~σ, ~T~ς, ~T~δ) is presented. Connectedness of single-valued neutrosophic soft topological spaces with single-valued neutrosophic soft grills is given. Moreover, the concept of γ-connectedness associated with a single-valued neutrosophic soft operator γ is extended on the set B.
Article Details
References
- S.E. Abbas, E. El-sanowsy, A. Atef, On Fuzzy Soft Irresolute Functions, J. Fuzzy. Math. 24 (2016), 465–482.
- S.E. Abbas, E. El-sanowsy, A. Atef, Stratified Modeling in Soft Fuzzy Topological Structures, Soft. Comput. 22 (2018), 1603–1613. https://doi.org/10.1007/s00500-018-3004-5.
- S.A. Abd El-Baki, Y.M. Saber, Fuzzy Extremally Disconnected Ideal Topological Spaces, Int. J. Fuzzy Log. Intell. Syst. 10 (2010), 1–6.
- S. Acharjee, B.C. Tripathy, Some Results on Soft Bitopology, Bol. Soc. Paran. Mat. 35 (2017), 269–279. https://doi.org/10.5269/bspm.v35i1.29145.
- B. Ahmad, A. Kharal, On Fuzzy Soft Sets, Adv. Fuzzy Syst. 2009 (2009), 586507. https://doi.org/10.1155/2009/586507.
- F. Alsharari, Y.M. Saber, GΘ ?τj τi -Fuzzy Closure Operator, New Math. Nat. Comput. 16 (2020), 123–141. https://doi.org/10.1142/s1793005720500088.
- F. Alsharari, Y.M. Saber, F. Smarandache, Compactness on Single-Valued Neutrosophic Ideal Topological Spaces, Neutrosophic Sets Syst. 41 (2021), 127–145.
- A. Aygünoglu, V. Çetkin, H. Aygün, An Introduction to Fuzzy Soft Topological Spaces, Hacettepe J. Math. Stat. 43 (2014), 193—204. https://doi.org/10.15672/HJMS.2015449418.
- V. Çetkin, A.P. Šostak, H. Aygün, An Approach to the Concept of Soft Fuzzy Proximity, Abstr. Appl. Anal. 2014 (2014), 782583. https://doi.org/10.1155/2014/782583.
- C. Gunduz (Aras), S. Bayramov, Some Results on Fuzzy Soft Topological Spaces, Math. Probl. Eng. 2013 (2013), 835308. https://doi.org/10.1155/2013/835308.
- A. Kharal, B. Ahmad, Mappings on Fuzzy Soft Classes, Adv. Fuzzy Syst. 2009 (2009), 407890. https://doi.org/10.1155/2009/407890.
- B.K. Maji, R. Biswas, A.R. Roy, Fuzzy soft sets, J. Fuzzy Math. 9 (2001), 589–602.
- P.K. Maji, A.R. Roy, R. Biswas, An Application of Soft Sets in a Decision Making Problem, Computers Math. Appl. 44 (2002), 1077–1083. https://doi.org/10.1016/s0898-1221(02)00216-x.
- D. Molodtsov, Soft Set Theory–First Results, Comput. Math. Appl. 37 (1999), 19–31. https://doi.org/10.1016/s0898-1221(99)00056-5.
- D.A. Molodtsov, Describing Dependences Using Soft Sets, J. Comput. Syst. Sci. Int. 40 (2001), 975–982.
- Y.M. Saber, M.A. Abdel-Sattar, Ideals on Fuzzy Topological Spaces, Appl. Math. Sci. 8 (2014), 1667–1691. https://doi.org/10.12988/ams.2014.33194.
- Y.M. Saber, F. Alsharari, F. Smarandache, An Introduction to Single-Valued Neutrosophic Soft Topological Structure, Soft Comput. 26 (2022), 7107–7122. https://doi.org/10.1007/s00500-022-07150-4.
- Y.M. Saber, F. Alsharari, Generalized Fuzzy Ideal Closed Sets on Fuzzy Topological Spaces in Sostak Sense, Int. J. Fuzzy Logic Intell. Syst. 18 (2018), 161–166. https://doi.org/10.5391/ijfis.2018.18.3.161.
- Y.M. Saber, F. Alsharari, F. Smarandache, On Single-Valued Neutrosophic Ideals in Sostak Sense, Symmetry. 12 (2020), 193. https://doi.org/10.3390/sym12020193.
- Y.M. Saber, F. Alsharari, F. Smarandache, M. Abdel-Sattar, Connectedness and Stratification of Single-Valued Neutrosophic Topological Spaces, Symmetry. 12 (2020), 1464. https://doi.org/10.3390/sym12091464.
- Y.M. Saber, F. Alsharari, F. Smarandache, M. Abdel-Sattar, On Single Valued Neutrosophic Regularity Spaces, Comput. Model. Eng. Sci. 130 (2022), 1625–1648. https://doi.org/10.32604/cmes.2022.017782.
- A.A. Salama, S.A. Alblowi, Neutrosophic Set and Neutrosophic Topological Spaces, IOSR J. Math. 3 (2012), 31–35. https://doi.org/10.9790/5728-0343135.
- A.A. Salama, F. Smarandache, Neutrosophic Crisp Set Theory, Educational Publisher, Columbus, 2015.
- F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics, 6th ed., InfoLearnQuest: Ann Arbor, MI, USA, (2007).
- A.P. Šostak, On a Fuzzy Topological Structure, Rend. Circ. Mat. Palermo. Ser. II, Suppl. 11 (1985), 89–103. http://dml.cz/dmlcz/701883.
- B. Tanay, M.B. Kandemir, Topological Structure of Fuzzy Soft Sets, Comput. Math. Appl. 61 (2011), 2952–2957. https://doi.org/10.1016/j.camwa.2011.03.056.
- H. Wang, F. Smarandache, Y.Q. Zhang, R. Sunderraman, Single Valued Neutrosophic Sets, Multispace Multistruct. 4 (2010), 410–413.
- H.L. Yang, Z.L. Guo, Y. She, X. Liao, On Single Valued Neutrosophic Relations, J. Intell. Fuzzy Syst. 30 (2016), 1045–1056. https://doi.org/10.3233/ifs-151827.
- J. Ye, A Multicriteria Decision-Making Method Using Aggregation Operators for Simplified Neutrosophic Sets, J. Intell. Fuzzy Syst. 26 (2014), 2459–2466. https://doi.org/10.3233/ifs-130916.
- L.A. Zadeh, Fuzzy Sets, Inform. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
- A.M. Zahran, S.A.A. El-Baki, Y.M. Saber, Decomposition of Fuzzy Ideal Continuity via Fuzzy Idealization, Int. J. Fuzzy Logic Intell. Syst. 9 (2009), 83–93. https://doi.org/10.5391/ijfis.2009.9.2.083.
- A.M. Zahran, S.E. Abbas, S.A. Abd El-baki, Y.M. Saber, Decomposition of Fuzzy Continuity and Fuzzy Ideal Continuity via Fuzzy Idealization, Chaos Solitons Fractals. 42 (2009), 3064–3077. https://doi.org/10.1016/j.chaos.2009.04.010.