New Approach to Solving Fuzzy Multiobjective Linear Fractional Optimization Problems

Main Article Content

Jean De La Croix Sama, Doubassi Parfait Traore, Kounhinir Some

Abstract

In this paper, an iterative approach based on the use of fuzzy parametric functions is proposed to find the best preferred optimal solution to a fuzzy multiobjective linear fractional optimization problem. From this approach, the decision-maker imposes tolerance values or termination conditions for each parametric objective function. Indeed, the fuzzy parametric values are computed iteratively, and each fuzzy fractional objective is transformed into a fuzzy non-fractional parametric function using these values of parameters. The core value of fuzzy numbers is used to transform the fuzzy multiobjective non-fractional problem into a deterministic multiobjective non-fractional problem, and the ε-constraint approach is employed to obtain a linear single objective optimization problem. Finally, by setting the value of parameter ε, the Dangtzig simplex method is used to obtain an optimal solution. Therefore, the number of solutions is equal to the number of used values, and the optimal solution is chosen according to the preference of the decision-maker. We have provided a didactic example to highlight the step of our approach and its numerical performances.

Article Details

References

  1. P.D.P. Dash, R.B. Dash, Solving Multi Objective Fuzzy Fractional Programming Problem, Ultra Scientist, 24 (2012), 429–434.
  2. T. Loganathan, G. Kandasamy, Fuzzy Solution of Fully Fuzzy Multi-Objective Linear Fractional Programming Problems, Pak. J. Stat. Oper. Res. 17 (2021), 817–825. https://doi.org/10.18187/pjsor.v17i4.3368.
  3. M. Chakraborty, S. Gupta, Fuzzy Mathematical Programming for Multi Objective Linear Fractional Programming Problem, Fuzzy Sets Syst. 125 (2002), 335–342. https://doi.org/10.1016/s0165-0114(01)00060-4.
  4. V. Chinnadurai, S. Muthukumar, Solving the Linear Fractional Programming Problem in a Fuzzy Environment: Numerical Approach, Appl. Math. Model. 40 (2016), 6148–6164. https://doi.org/10.1016/j.apm.2016.01.044.
  5. M. Durantoksari, Taylor Series Approach to Fuzzy Multiobjective Linear Fractional Programming, Inform. Sci. 178 (2008), 1189–1204. https://doi.org/10.1016/j.ins.2007.06.010.
  6. E. Valipour, M.A. Yaghoobi, M. Mashinchi, An Iterative Approach to Solve Multiobjective Linear Fractional Programming Problems, Appl. Math. Model. 38 (2014), 38–49. https://doi.org/10.1016/j.apm.2013.05.046.
  7. S. Nayak, A. Ojha, Generating Pareto Optimal Solutions of Multi-Objective LFPP with Interval Coefficients Using -Constraint Method, Math. Model. Anal. 20 (2015), 329–345. https://doi.org/10.3846/13926292.2015.1048757.
  8. C. Veeramani, M. Sumathi, A New Method for Solving Fuzzy Linear Fractional Programming Problems, J. Intell. Fuzzy Syst. 31 (2016), 1831–1843. https://doi.org/10.3233/jifs-15712.
  9. N. Güzel, A Proposal to the Solution of Multiobjective Linear Fractional Programming Problem, Abstr. Appl. Anal. 2013 (2013), 435030. https://doi.org/10.1155/2013/435030.
  10. F.A. Pramy, An Approach for Solving Fuzzy Multi-Objective Linear Fractional Programming Problems, Int. J. Math. Eng. Manage. Sci. 3 (2018), 280–293. https://doi.org/10.33889/ijmems.2018.3.3-020.
  11. C. Veeramani, M. Sumathi, Fuzzy Mathematical Programming approach for Solving Fuzzy Linear Fractional Programming Problem, RAIRO-Oper. Res. 48 (2014), 109–122. https://doi.org/10.1051/ro/2013056.
  12. R.E. Bellman, L.A. Zadeh, Decision-Making in a Fuzzy Environment, Manage. Sci. 17 (1970), B-141–B-164. https://doi.org/10.1287/mnsc.17.4.b141.
  13. H.C. Wu, An (α, β)-Optimal Solution Concept in Fuzzy Optimization Problems, Optimization. 53 (2004), 203–221. https://doi.org/10.1080/02331930410001699928.
  14. M. Deb, P.K. De, A Note on Fuzzy Multi-objective Linear Fractional Programming Problem, Int. J. Comput. Sci. Network, 3 (2014), 2277–5420.
  15. L.A. Zadeh, The Concept of a Linguistic Variable and Its Application to Approximate Reasoning—I, Inform. Sci. 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5.
  16. L.A. Zadeh, The Concept of a Linguistic Variable and Its Application to Approximate Reasoning—II, Inform. Sci. 8 (1975), 301–357. https://doi.org/10.1016/0020-0255(75)90046-8.
  17. L.A. Zadeh, The Concept of a Linguistic Variable and Its Application to Approximate Reasoning—III, Inform. Sci. 9 (1975), 43–80. https://doi.org/10.1016/0020-0255(75)90017-1.
  18. H.C. Wu, Duality Theory in Fuzzy Optimization Problems, Fuzzy Optim. Decis. Making. 3 (2004), 345–365. https://doi.org/10.1007/s10700-004-4203-3.
  19. H.C. Wu, Solutions of Fuzzy Multiobjective Programming Problems Based on the Concept of Scalarization, J. Optim. Theory Appl. 139 (2008), 361–378. https://doi.org/10.1007/s10957-008-9419-x.
  20. H.C. Wu, The Karush-Kuhn-Tucker Optimality Conditions for Multi-Objective Programming Problems With Fuzzy-Valued Objective Functions, Fuzzy Optim. Decis. Making. 8 (2009), 1–28. https://doi.org/10.1007/s10700-009-9049-2.
  21. M. Sakawa, H. Yano, Interactive Decision Making for Multi-Objective Linear Fractional Programmingproblems With Fuzzy Parameters, Cybernet. Syst. 16 (1985), 377–394. https://doi.org/10.1080/01969728508927781.
  22. T. Loganathan, K. Ganesan, Solution of Fully Fuzzy Multi-objective Linear Fractional Programming Problems-A Gauss Elimination Approach, Eng. Lett. 30 (2022), 1085–1091.
  23. S. Nayak, A. Ojha, Generating Pareto Optimal Solutions of Multi-Objective LFPP With Interval Coefficients Using -Constraint Method, Math. Model. Anal. 20 (2015), 329–345. https://doi.org/10.3846/13926292.2015.1048757.
  24. R. Arya, P. Singh, S. Kumari, M.S. Obaidat, An Approach for Solving Fully Fuzzy Multi-Objective Linear Fractional Optimization Problems, Soft Comput. 24 (2019), 9105–9119. https://doi.org/10.1007/s00500-019-04442-0.
  25. W. Dinkelbach, On Nonlinear Fractional Programming, Manage. Sci. 13 (1967), 492–498. https://doi.org/10.1287/mnsc.13.7.492.