On the Stability of Quadratic-Quartic (Q2Q4) Functional Equation over Non-Archimedean Normed Space

Main Article Content

A. Ramachandran, S. Sangeetha

Abstract

In the present work the stability of Hyers-Ulam mixed type of quadratic-quartic Cauchy functional equation
g(2x+y)+g(2x−y)=4g(x+y)+4g(x−y)+2g(2x)−8g(x)−6g(y)
has been proved over Non-Archimedean normed space.

Article Details

References

  1. T. Aoki, On the Stability of the Linear Transformation in Banach Spaces, J. Math. Soc. Japan. 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064.
  2. G. Bachman, Introduction to p-Adic Numbers and Valuation Theory, Academic Press, 1964.
  3. D.G. Bourgin, Classes of Transformations and Bordering Transformations, Bull. Amer. Math. Soc. 57 (1951), 223–237.
  4. A. Ebadian, A. Najati, M.E. Gordji, On Approximate Additive–Quartic and Quadratic–Cubic Functional Equations in Two Variables on Abelian Groups, Results. Math. 58 (2010), 39–53. https://doi.org/10.1007/s00025-010-0018-4.
  5. M. Eshaghi Gordji, H. Khodaei, R. Khodabakhsh, General Quartic–cubic–quadratic Functional Equation in NonArchimedean Normed Spaces, U.P.B. Sci. Bull. Ser. A. 72 (2010), 69–84.
  6. M. Eshaghi Gordji, M.B. Savadkouhi, Stability of Cubic and Quartic Functional Equations in Non-Archimedean Spaces, Acta Appl. Math. 110 (2009), 1321–1329. https://doi.org/10.1007/s10440-009-9512-7.
  7. Z. Gajda, On Stability of Additive Mappings, Int. J. Math. Math. Sci. 14 (1991), 431–434.
  8. M.E. Gordji, S. Abbaszadeh, C. Park, On the Stability of a Generalized Quadratic and Quartic Type Functional Equation in Quasi-Banach Spaces, J. Inequal. Appl. 2009 (2009), 153084. https://doi.org/10.1155/2009/153084.
  9. M.E. Gordji, M.B. Savadkouhi, C. Park, Quadratic-Quartic Functional Equations in RN-Spaces, J. Inequal. Appl. 2009 (2009), 868423. https://doi.org/10.1155/2009/868423.
  10. M.E. Gordji, S.K. Gharetapeh, J.M. Rassias, S. Zolfaghari, Solution and Stability of a Mixed Type Additive, Quadratic, and Cubic Functional Equation, Adv. Differ. Equ. 2009 (2009), 826130. https://doi.org/10.1155/2009/826130.
  11. K. Hensel, Über eine neue Begründung der Theorie der Algebraischen Zahlen, Jahresber. Dtsch. Math.-Ver. 6 (1897), 83–88. https://eudml.org/doc/144593.
  12. D.H. Hyers, G. Isac, Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, 1998.
  13. Y.S. Lee, S. Kim, C. Kim, Stability for the Mixed Type of Quartic and Quadratic Functional Equations, J. Funct. Spaces. 2014 (2014), 853743. https://doi.org/10.1155/2014/853743.
  14. S.M. Mohammad, T. Rassias M., Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discr. Math. 1 (2007), 325–334. https://doi.org/10.2298/aadm0702325m.
  15. A. Ramachandran, S. Sangeetha, On the Generalized Quadratic-Quartic Cauchy Functional Equation and its Stability over Non-Archimedean Normed Space, Math. Stat. 10 (2022), 1210–1217. https://doi.org/10.13189/ms.2022.100607.
  16. Th.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
  17. A.M. Robert, A Course in p-Adic Analysis, Springer, New York, 2000.
  18. S.M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, 1940.
  19. A.C.M. van Rooij, Non-Archimedean Functional Analysis, Monographs and Textbooks in Pure and Applied Mathematics, 51, Marcel Dekker, New York, 1978.