A Study on Degree Based Topological Indices of Harary Subdivision Graphs With Application
Main Article Content
Abstract
Combinatorial design theory and graph decompositions play a critical role in the exploration of combinatorial design theory and are essential in mathematical sciences. The process of graph decomposition involves partitioning the set of edges in a graph G. An n-sun graph, characterized by a cycle with an edge connecting each vertex to a terminating vertex of degree one, is introduced in this study. The concept of n-sun decomposition is applied to certain even-order graphs. The indices covered in this study include the general connectivity index of the harary graphs, Zagreb indices, symmetric division degree indices and randic indices.
Article Details
References
- W.D. Wallis, Magic Graphs, Birkhäuser, Basel, (2001).
- B. Alspach, J.C. Bermond, D. Sotteau, Decomposition Into Cycles I: Hamilton Decompositions, in: G. Hahn, G. Sabidussi, R.E. Woodrow (Eds.), Cycles and Rays, Springer Netherlands, Dordrecht, 1990: pp. 9–18. https://doi.org/10.1007/978-94-009-0517-7_2.
- B. Alspach, The Wonderful Walecki Construction, Bull. Inst. Comb. Appl. 52 (2008), 7–20.
- B. Alspach, H. Gavlas, Cycle Decompositions of Kn and Kn − I, J. Comb. Theory, Ser. B. 81 (2001), 77–99. https://doi.org/10.1006/jctb.2000.1996.
- D.B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, (2001).
- J.L. Gross, J. Yellen, Handbook of Graph Theory, CRC Press, Boca Raton, (2004).
- M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, The First and Second Zagreb Indices of Some Graph Operations, Discr. Appl. Math. 157 (2009), 804–811. https://doi.org/10.1016/j.dam.2008.06.015.
- G.H. Shirdel, H. Rezapour, A.M. Sayadi, The Hyper-Zagreb Index of Graph Operations, 4 (2013), 213–220.
- S.M. Sankarraman, A Computational Approach on Acetaminophen Drug Using Degree-Based Topological Indices and M-Polynomials, Biointerface Res. Appl. Chem. 12 (2021), 7249–7266. https://doi.org/10.33263/briac126.72497266.
- I. Gutman, Multiplicative Zagreb Indices of Trees, Bull. Soc. Math. Banja Luka. 18 (2011), 17–23.
- S. Hayat, M. Imran, On Degree Based Topological Indices of Certain Nanotubes, J. Comput. Theor. Nanosci. 12 (2015), 1599–1605. https://doi.org/10.1166/jctn.2015.3935.
- E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An Atom-Bond Connectivity Index: Modelling the Enthalpy of Formation of Alkanes, Indian. J. Chem. 37A (1998), 849–855.
- X. Ren, X. Hu, B. Zhao, Proving a Conjecture Concerning Trees With Maximal Reduced Reciprocal Randic Index, MATCH Commun. Math. Comput. Chem. 76 (2016), 171–184.
- B. Furtula, I. Gutman, A Forgotten Topological Index, J. Math. Chem. 53 (2015), 1184–1190. https://doi.org/10.1007/s10910-015-0480-z.
- A.R. Ashrafi, M. Mirzargar, PI, Szeged and Edge Szeged of an Infinite Family of Nanostardendrimers, Indian J. Chem. 47A (2008), 538–541.
- Z. Chen, M. Dehmer, F. Emmert-Streib, Y. Shi, Entropy Bounds for Dendrimers, Appl. Math. Comput. 242 (2014), 462–472. https://doi.org/10.1016/j.amc.2014.05.105.
- M.V. Diudea, A.E. Vizitiu, M. Mirzagar, A.R. Ashrafi, Sadhana Polynomial in Nano-Dendrimers, Carpathian J. Math. 26 (2010), 59–66.
- Z. Hassan Niazi, M.A.T. Bhatti, M. Aslam, Y. Qayyum, M. Ibrahim, A. Qayyum, d-Lucky Labeling of Some Special Graphs, Amer. J. Math. Anal. 10 (2022), 3–11. https://doi.org/10.12691/ajma-10-1-2.
- A. Asghar, A. Qayyum, N. Muhammad, Different Types of Topological Structures by Graphs, Eur. J. Math. Anal. 3 (2022), 3.
- M. Ahmad, S. Hussain, U. Parveen, I. Zahid, M. Sultan, A. Qayyum, On Degree-Based Topological Indices of Petersen Subdivision Graph, Eur. J. Math. Anal. 3 (2023), 20.
- M. Ahmad, M.J. Hussain, G. Atta, S. Raza, I. Waheed, A. Qayyum, Topological Evaluation of Four Para-Line Graphs Absolute Pentacene Graphs Using Topological Indices, Int. J. Anal. Appl. 21 (2023), 66. https://doi.org/10.28924/2291-8639-21-2023-66.
- R.M.K. Iqbal, M. Ahmad, A. Qayyum, S.S. Supadi, M.J. Hussain, S. Raza, On Degree-Based Topological Indices of Toeplitz Graphs, Int. J. Anal. Appl. 21 (2023), 111. https://doi.org/10.28924/2291-8639-21-2023-111.