Bipolar Fuzzy Filters of Gamma-Near Rings

Main Article Content

V. P. Vineela Korada, S. Ragamayi, Aiyared Iampan

Abstract

The main objective of this paper is to present the notation of bipolar fuzzy filters of Γ-near rings and ordered Γ-near rings. As a consequence, we deal with bipolar fuzzy prime ideals of Γ-near rings and ordered Γ-near rings. Also, we examine the one-to-one correspondence of bipolar fuzzy filters and crisp filters of Γ-near rings. Later, we define and study the homomorphism of ordered Γ-near rings.

Article Details

References

  1. G.L. Booth, A Note on Γ-Near Rings, Stud. Sci. Math. Hung. 23 (1988), 471–475.
  2. Y.B. Jun, M. Sapanci, M.A. Öztürk, Fuzzy Ideals in Gamma Near-Rings, Turk. J. Math. 22 (1998), 449–549.
  3. K.J. Lee, Bipolar Fuzzy Subalgebras and Bipolar Fuzzy Ideals of BCK/BCI-Algebras, Bull. Malays. Math. Sci. Soc. 32 (2009), 361–373.
  4. N. Meenakumari, T.T. Chelvam, Fuzzy Bi-Ideals in Gamma Near-Rings, J. Algebra Discr. Struct. 9 (2011), 43–52.
  5. N. Nobusawa, On a Generalization of the Ring Theory, Osaka J.Math. 1 (1964), 81–89. https://doi.org/10.18910/12354.
  6. G. Pilz, Near-Rings: The Theory and Its Applications, North-Holland, Amsterdam, (1983).
  7. S. Ragamayi, Y. Bhargavi, A Study of Vague Gamma-Nearrings, Int. J. Sci. Technol. Res. 9 (2020), 3960–3963.
  8. S. Ragamayi, Y. Bhargavi, Some Results on Homomorphism of Vague Ideal of a Gamma-Near Ring, Int. J. Sci. Technol. Res. 9 (2020), 3972–3975.
  9. S. Ragamayi, Y. Bhargavi, C. Krishnaveni, P. Bindu, Lattice-Fuzzy Prime-Ideal of a Gamma-Nearring, J. Crit. Rev. 7 (2020), 1–5. https://doi.org/10.31838/jcr.07.13.01.
  10. S. Ragamayi, G. Jaya Lalitha, P. Bindu, On L-Vague Maximal-Ideal of a Γ-Near Ring, AIP Conf. Proc. 2375 (2021), 020017. https://doi.org/10.1063/5.0066395.
  11. S. Ragamayi, N. Konda Reddy, P. Bindu, On L-Vague Prime-Ideal of a Γ-Near Ring and Its Characteristic Properties, AIP Conf. Proc., 2375, (2021), 020020. https://doi.org/10.1063/5.0066396.
  12. S. Ragamayi, N. Konda Reddy, G.J. Lalitha, P. Bindu, A Study of L-Fuzzy Cosets of a Γ-Near Ring, AIP Conf. Proc., 2375, (2021), 020010. https://doi.org/10.1063/5.0066393
  13. S. Ragamayi, N. Konda Reddy, B.S. Kumar, Results on L-Vague Ideal of a Γ-Near Ring, AIP Conf. Proc. 2375 (2021), 020014. https://doi.org/10.1063/5.0066388.
  14. M.M.K. Rao, Fuzzy Filters in Ordered Γ-Semirings, Caspian J. Math. Sci. 8 (2019), 18–34. https://doi.org/10.22080/cjms.2018.12048.1314.
  15. M.M.K. Rao, B. Venkateswarlu, Fuzzy Filters in Γ-Semirings, Malaya J. Mat. 3 (2015), 93–98. https://doi.org/10.26637/mjm301/009.
  16. B. Satyanarayana, Contributions to Near-Rings Theory, Doctoral Thesis, Nagarjuna University, (1984).
  17. V.P.V. Korada, S. Ragamayi, Application of Bi-Polar Fuzzy Theory to Ideals in Gamma-Near Rings and It’s Characteristics, AIP Conf. Proc. 2707 (2023), 020015. https://doi.org/10.1063/5.0143352.
  18. V.P.V. Korada, S. Ragamayi, G.J. Lalitha, Some Results on Bi-Polar Fuzzy Bi-Ideals of Γ-Near Rings, AIP Conf. Proc. 2707 (2023), 020014. https://doi.org/10.1063/5.0143353.
  19. L.A. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
  20. W.R. Zhang, Bipolar Fuzzy Sets and Relations: A Computational Framework for Cognitive Modeling and Multiagent Decision Analysis, in: Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, IEEE, San Antonio, TX, USA, 1994: pp. 305–309. https://doi.org/10.1109/IJCF.1994.375115.