The Exact Norm of Modified Hardy Operator in Power-Weighted Lebesgue Spaces
Main Article Content
Abstract
We consider the necessary and sufficient condition for boundedness of modified Hardy operators from a power-weighted Lebesgue space to another. We also compute the exact norm of modified n-dimensional Hardy operators from those spaces.
Article Details
References
- B. Muckenhoupt, R.L. Wheeden, Weighted Norm Inequalities for Singular and Fractional Integrals, Trans. Amer. Math. Soc. 161 (1971), 249–258.
- E.M. Stein, Singular Integral and Differentiability Properties of Functions, Vol. 2, Princeton University Press, Princeton, 1973.
- G.A. Bliss, An Integral Inequality, J. London Math. Soc. s1-5 (1930), 40–46. https://doi.org/10.1112/jlms/s1-5.1.40.
- G.H. Hardy, Note on Hilbert Theorem, Math. Z. 6 (1920), 314–317.
- G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, 2nd ed. Cambridge University Press, Cambridge, 1952.
- N. Karapetiants, S. Samko, Equations with involutive operators, Springer, New York, 2012. https://doi.org/10.1007/978-1-4612-0183-0.
- N. Samko, Integral Operators Commuting With Dilations and Rotations in Generalized Morrey-type Spaces, Math. Methods Appl. Sci. 43 (2020), 9416–9434. https://doi.org/10.1002/mma.6279.