Some Results of n-EP Operators on Hilbert Spaces
Main Article Content
Abstract
Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H and n∈N. An operator T∈B(H) with closed range, is called n-EP operator if Tn commutes with T+. In this paper, we present some new characterizations of n-EP operators, using Moore-penrose and Drazin inverse. Also, the problem of determining when the product of two operators is n-EP will be considered. As a consequence, we generalize a famous result on products of normal operators, due to I. Kaplansky to n-EP operators.
Article Details
References
- S.A. Alzuraiqi, A.B. Patel, On n-Normal Operators, Gen. Math. Notes, 1 (2010), 61–73.
- O. Maria Baksalary, G. Trenkler, Characterizations of EP, Normal, and Hermitian Matrices, Linear Multilinear Algebra. 56 (2008), 299–304. https://doi.org/10.1080/03081080600872616.
- E. Boasso, V. Rakocevic, Characterizations of EP and Normal Banach Algebra Elements and Banach Space Opera- ` tors, Linear Algebra Appl. 435 (2011), 342–353. https://doi.org/10.1016/j.laa.2011.01.031.
- S.L. Campbell, C.D. Meyer, EP Operators and Generalized Inverses, Canad. Math. Bull. 18 (1975), 327–333. https://doi.org/10.4153/cmb-1975-061-4.
- D.S. Djorrdjevic, Products of EP operators on Hilbert spaces, Proc. Amer. Math. Soc. 129 (2000), 1727–1731. https://doi.org/10.1090/s0002-9939-00-05701-4.
- D.S. Djordjevic, Further Results on the Reverse Order Law for Generalized Inverses, SIAM J. Matrix Anal. Appl. 29 (2008), 1242–1246. https://doi.org/10.1137/050638114.
- T. Furuta, On the Polar Decomposition of an Operator, Acta Sci. Math. 46 (1983), 261–268.
- R.E. Harte, M. Mbekhta, On Generalized Inverses in C*-Algebras, Stud. Math. 103 (1992) 71–77.
- H.G. Heuser, Functional Analysis, John Wiley & Sons, 1982.
- S. Izumino, The Product of Operators With Closed Range and an Extension of the Reverse Order Law, Tohoku Math. J. (2) 34 (1982), 43–52. https://doi.org/10.2748/tmj/1178229307.
- P.S. Johnson, V. A., K. Kamaraj, Fuglede-Putnam type commutativity theorems for EP operators, Malaya J. Mat. 9 (2021) 709–714. https://doi.org/10.26637/mjm0901/0124.
- I. Kaplansky, Products of Normal Operators, Duke Math. J. 20 (1953), 257–260. https://doi.org/10.1215/s0012-7094-53-02025-0.
- J.J. Koliha, P. Patricio, Elements of Rings With Equal Spectral Idempotents, J. Aust. Math. Soc. 72 (2002), 137–152. https://doi.org/10.1017/s1446788700003657.
- S.B. Malik, L. Rueda, N. Thome, The Class of m-EP and m-Normal Matrices, Linear Multilinear Algebra. 64 (2016), 2119–2132. https://doi.org/10.1080/03081087.2016.1139037.
- X. Wang, C. Deng, Properties of m-EP Operators, Linear Multilinear Algebra. 65 (2016), 1349–1361. https://doi.org/10.1080/03081087.2016.1235131.