A Study on Quotient Structures of Bipolar Fuzzy Finite State Machines
Main Article Content
Abstract
This article introduces different congruence relations on the bipolar fuzzy set associated with the bipolar fuzzy finite state machine. Each congruence relation associates a semigroup with the bipolar fuzzy finite automata. We also discuss characterizing a bipolar fuzzy finite state machine by defining an admissible relation.
Article Details
References
- A. Iampan, U.V. Kalyani, T. Eswarlal, G.V.R. Reddy, Bipolar Neutrosophic Finite Switchboard State Machines, Int. J. Neutrosoph. Sci. 21 (2023), 59–70. https://doi.org/10.54216/ijns.210204.
- Y.B. Jun, Intuitionistic Fuzzy Finite State Machines, J. Appl. Math. Comput. 17 (2005), 109–120. https://doi.org/10.1007/bf02936044.
- Y.B. Jun, Intuitionistic Fuzzy Finite Switchboard State Machines, J. Appl. Math. Comput. 20 (2006), 315–325. https://doi.org/10.1007/bf02831941.
- Y.B. Jun, Quotient Structures of Intuitionistic Fuzzy Finite State Machines, Inf. Sci. 177 (2007), 4977–4986. https://doi.org/10.1016/j.ins.2007.06.008.
- Y.B. Jun, J. Kavikumar, Bipolar Fuzzy Finite State Machines, Bull. Malays. Math. Sci. Soc. 34 (2011), 181–188.
- H.V. Kumbhojkar, S.R. Chaudhari, On Covering of Products of Fuzzy Finite State Machines, Fuzzy Sets Syst. 125(2002), 215–222. https://doi.org/10.1016/S0165-0114(01)00059-8.
- K.M. Lee, Bipolar-Valued Fuzzy Sets and Their Operations, In: Proceedings of International Conference on Intelligent Technologies, Bangkok, Thailand, 307–312, 2000.
- D.S. Malik, J.N. Mordeson, M.K. Sen, Minimization of Fuzzy Finite Automata, Inf. Sci. 113 (1999), 323–330. https://doi.org/10.1016/S0020-0255(98)10073-7.
- D.S. Malik, J.N. Mordeson, M.K. Sen, Products of Fuzzy Finite State Machines, Fuzzy Sets Syst. 92 (1997), 95–102. https://doi.org/10.1016/S0165-0114(96)00166-2.
- S. Prabhu, R.N. Devi, D. Vidhya, Finite State Machine via Bipolar Neutrosophic Set Theory, J. Fuzzy Math. 25 (2017), 865–884.
- K. Reena, Bipolar Vague Finite Switchboard State Machine, Int. J. Math. Trends and Technol. 65 (2019), 31–40.
- L.A. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.