A Class of Non-Bazilevic Functions Subordinate to Gegenbauer Polynomials

Main Article Content

Waleed Al-Rawashdeh


In this paper, we introduce and investigate a class non-Bazilevic functions that associated by Gegenbauer Polynomials. The coefficient estimates of functions belonging to this class are derived. Moreover, we obtain the classical Fekete-Szegö inequality of functions belonging to this class.

Article Details


  1. S.N. Al-Khafaji, A. Al-Fayadh, M.M. Abbood, The Application of Quasi-Subordination for Non-Bazilevi´c Functions, AIP Conf. Proc. 2475 (2023), 080016. https://doi.org/10.1063/5.0104284.
  2. W. Al-Rawashdeh, Fekete-Szegö Functional of a Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials, Eur. J. Pure Appl. Math. 17 (2024), 158–170.
  3. W. Al-Rawashdeh, Horadam Polynomials and a Class of Biunivalent Functions Defined by Ruscheweyh Operator, Int. J. Math. Math. Sci. 2023 (2023), 2573044. https://doi.org/10.1155/2023/2573044.
  4. W. Al-Rawashdeh, Coefficient Bounds of a Class of Bi-Univalent Functions Related to Gegenbauer Polynomials, Int. J. Math. Comput. Sci. 19 (2024), 635–642.
  5. W. Al-Rawashdeh, Applications of Gegenbauer Polynomials to a Certain Subclass of p-Valent Functions, WSEAS Trans. Math. Accepted.
  6. W. Al-Rawashdeh, A Class of p-Valent Functions Associated With Gegenbauer Polynomials, preprint.
  7. M. Ca ˘glar, H. Orhan and M. Kamali, Fekete-Szegö Problem for a Subclass of Analytic Functions Associated With Chebyshev Polynomials, Bol. Soc. Paran. Mat. 40 (2022), 1–6. https://doi.org/10.5269/bspm.51024.
  8. J.H. Choi, Y.C. Kim, T. Sugawa, A General Approach to the Fekete-Szegö Problem, J. Math. Soc. Japan. 59 (2007), 707–727. https://doi.org/10.2969/jmsj/05930707.
  9. E.J. Dansu and S.O. Olatunji, Applications of Chebyshev Polynomials on a Sakaguchi Type Class of Analytic Functions Associated With Quasi-Subordination, Acta Comment. Univ. Tart. Math. 22 (2018), 49–56. https://doi.org/10.12697/acutm.2018.22.05.
  10. P. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York, 1983.
  11. P. Duren, Subordination, in: J.D. Buckholtz, T.J. Suffridge (Eds.), Complex Analysis, Springer Berlin Heidelberg, Berlin, Heidelberg, 1977: pp. 22–29. https://doi.org/10.1007/BFb0096821.
  12. A.W. Goodman, Univalent Functions, Mariner Pub. Co, Tampa, FL, 1983.
  13. M. Kamali, M. Ca ˘glar, E. Deniz and M. Turabaev, Fekete Szegö Problem for a New Subclass of Analytic Functions Satisfying Subordinate Condition Associated With Chebyshev Polynomials, Turk. J. Math. 45 (2021), 1195–1208. https://doi.org/10.3906/mat-2101-20.
  14. F.R. Keogh, E.P. Merkes, A Coefficient Inequality for Certain Classes of Analytic Functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.
  15. M. Fekete and G. Szegö, Eine Bemerkung Über Ungerade Schlichte Funktionen, J. London Math. Soc. s1-8 (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85.
  16. K. Kiepiela, I. Naraniecka, J. Szynal, The Gegenbauer Polynomials and Typically Real Functions, J. Comput. Appl. Math. 153 (2003), 273–282. https://doi.org/10.1016/s0377-0427(02)00642-8.
  17. M. Lewin, On a Coefficient Problem for Bi-Univalent Functions, Proc. Amer. Math. Soc. 18 (1967), 63–68.
  18. N. Magesh, S. Bulut, Chebyshev Polynomial Coefficient Estimates for a Class of Analytic Bi-Univalent Functions Related to Pseudo-Starlike Functions, Afr. Mat. 29 (2018), 203–209. https://doi.org/10.1007/s13370-017-0535-3.
  19. S. Miller, P. Mocabu, Differential Subordination: Theory and Applications, CRC Press, New York, 2000.
  20. Z. Nehari, Conformal Mappings, McGraw-Hill, New York, 1952.
  21. E. Netanyahu, The Minimal Distance of the Image Boundary From the Origin and the Second Coefficient of a Univalent Function in |z| < 1, Arch. Rational Mech. Anal. 32 (1969), 100–112. https://doi.org/10.1007/bf00247676.
  22. M. Obradovic, A Class of Univalent Functions, Hokkaido Math. J. 27 (1998), 329–335. https://doi.org/10.14492/hokmj/1351001289.
  23. H. Orhan, N. Magesh, V.K. Balaji, Second Hankel Determinant for Certain Class of Bi-Univalent Functions Defined by Chebyshev Polynomials, Asian-Eur. J. Math. 12 (2019), 1950017. https://doi.org/10.1142/s1793557119500177.
  24. S. Owa, T. Sekine, R. Yamakawa, On Sakaguchi Type Functions, Appl. Math. Comput. 187 (2007), 356–361. https://doi.org/10.1016/j.amc.2006.08.133.
  25. P. Sharma, R.K. Raina, On a Sakaguchi-Type Class of Univalent Functions Associated With Quasi-Subordination, Comment. Math. Univ. St. Paul, 64 (2015), 59–70.
  26. S. Shah, S. Al-Sa’di, S. Hussain, A. Tasleem, A. Rasheed, I. Cheema, M. Darus, Fekete-Szegö Functional for a Class of Non-Bazilevic Functions Related to Quasi-Subordination, Demonstr. Math. 56 (2023), 2022–0232. https://doi.org/10.1515/dema-2022-0232.
  27. H.M. Srivastava, H.L. Manocha, a Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), 1984.
  28. H. M. Srivastava, M. Kamali and A. Urdaletova, A Study of the Fekete-Szegö Functional and Coefficient Estimates for Subclasses of Analytic Functions Satisfying a Certain Subordination Condition and Associated With the Gegenbauer Polynomials, AIMS Math. 7 (2022), 2568–2584. https://doi.org/10.3934/math.2022144.