On the Spectral Theory of Regularized Quasi-Semigroups

Main Article Content

Youness Zahouan

Abstract

We have shown a spectral inclusion between a different spectrum of a C0-quasi-semigroups in [9]. Precisely for Saphar, essentially Saphar, quasi-Fredholm, Kato and essentially Kato spectra. In this paper, we extend these results for a C-quasi-semigroups (regularized quasi-semigroups) where C is a bounded injective operator.

Article Details

References

  1. K.J. Engel, R. Nagel, S. Brendle, One-parameter semigroups for linear evolution equations, Springer, New York, (2000).
  2. M. Janfada, On regularized quasi-semigroups and evolution equations, Abstr. Appl. Anal. 2010 (2010), 785428. https://doi.org/10.1155/2010/785428.
  3. J.P. Labrousse, Les operateurs quasi Fredholm: Une generalisation des operateurs semi Fredholm, Rend. Circ. Mat. Palermo. 29 (1980), 161–258. https://doi.org/10.1007/bf02849344.
  4. H. Leiva, D. Barcenas, Quasi-semigroups, evolution equation and controllability, Universidad de Los Andes, Facultad de Ciencias, Departamento de Matematica, Merida, Venezuela, (1991).
  5. V. Müller, Spectral theory of linear operators, Birkhäuser, Basel, 2007. https://doi.org/10.1007/978-3-7643-8265-0.
  6. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, New York, (2012).
  7. A. Tajmouati, H. Boua, M. Karmouni, Quasi-Fredholm, Saphar spectra for C0-semigroups generators, Italian J. Pure Appl. Math. 36 (2016), 359–366.
  8. A. Tajmouati, M. Karmouni, Y. Zahouan, Quasi-Fredholm and Saphar spectra for C0-quasi-semigroups, Adv. Oper. Theory. 5 (2020), 1325–1339. https://doi.org/10.1007/s43036-020-00040-2.
  9. A. Tajmouati, Y. Zahouan, Spectral inclusion between a regularized quasi-semigroups and their generators, TWMS J. Appl. Eng. Math. 13 (2023), 202–213.
  10. A. Toukmati, Spectral inclusions of exponentially bounded C -semigroups, Methods Funct. Anal. Topol. 2 (2022), 169–175. https://doi.org/10.31392/mfat-npu26_2.2022.09.
  11. S. Xiaoqiu, Spectral mapping theorems for C-semigroups, J. Math. Res. Exposition. 16 (1996), 530–536.