Some Results of Malcev-Neumann Rings

Main Article Content

Kholood Alnefaie, Eltiyeb Ali

Abstract

Let us consider the function σ, which maps elements from the group G to the group of automorphisms of the ring R. In this paper, we are studying new conditions under which the Malcev-Neumann ring R∗((G)) is a PS, APP, PF, PP, and a Zip rings, respectively. It has been demonstrated that if R is a reduced ring and σ is weakly rigid, then the Malcev-Neumann ring R∗((G)) over a PS-ring is a PS. Furthermore, if σ is weakly rigid and the ring R satisfies the descending chain condition on left annihilators, then the Malcev-Neumann ring R∗((G)) is a right APP-ring if and only if, for any G-indexed generated right ideal A of R, rR(A) is left s-unital. Additionally, we have proven that if R is a commutative ring and σ is weakly rigid, then the Malcev-Neumann ring R∗((G)) is a PF ring if and only if, for any two G-indexed subsets A and B of R such that B⊆annR(A), there exists c∈annR(A) such that bc = b for all b ∈ B. These results extend the corresponding findings for polynomial rings and Laurent power series rings.

Article Details

References

  1. L. Makar-Limanov, The Skew Field of Fractions of the Weyl Algebra Contains a Free Noncommutative Subalgebra, Commun. Algebra. 11 (1983), 2003–2006. https://doi.org/10.1080/00927878308822945.
  2. M. Lorenz, Division Algebras Generated by Finitely Generated Nilpotent Groups, J. Algebra. 85 (1983), 368–381. https://doi.org/10.1016/0021-8693(83)90101-1.
  3. I.M. Musson, K. Stafford, Malcev-Neumann Group Rings, Commun. Algebra. 21 (1993), 2065–2075. https://doi.org/10.1080/00927879308824665.
  4. C. Sonin, Krull Dimension of Malcev-Neumann Rings, Commun. Algebra. 26 (1998), 2915–2931. https://doi.org/10.1080/00927879808826317.
  5. D.S. Passman, Infinite Crossed Pure and Applied Mathematics, 135, Academic Press, Boston, MA, 1989.
  6. D.S. Passman, The Algebraic Structure of Group Rings, John Wiley, New York, (1977).
  7. E. Ali, The Reflexive Condition on Skew Monoid Rings, Eur. J. Pure Appl. Math. 16 (2023), 1878–1893.
  8. Z.K. Liu, Principal Quasi-Baerness of Malcev-Neumann Rings, J. Math. (Wuhan, China), 25 (2005), 237–246.
  9. Y.V. Merekin, On a Matrix Representation of Recursive Schemes for Word Generation, Southeast Asian Bull. Math. 31 (2007), 1167–1172.
  10. E. Ali, A. Elshokry, Some Results on a Generalization of Armendariz Rings, Asia Pac. J. Math. 6 (2019), 1. https://doi.org/10.28924/APJM/6-1.
  11. E. Ali, A Note on Skew Generalized Power Serieswise Reversible Property, Int. J. Anal. Appl. 21 (2023), 69. https://doi.org/10.28924/2291-8639-21-2023-69.
  12. W.K. Nicholson, J.F. Watters, Rings With Projective Socle, Proc. Amer. Math. Soc. 102 (1988), 443–450.
  13. X. Weimin, Modules With Projective Socles, Riv. Mat. Univ. Parma, 1(5) (1992), 311–315.
  14. L. Zhongkui, L. Fang, Ps-Rings of Generalized Power Series, Commun. Algebra. 26 (1998), 2283–2291. https://doi.org/10.1080/00927879808826276.
  15. E. Ali, On Crossed Product Rings Over p.q.-Baer and Quasi-Baer Rings, Int. J. Anal. Appl. 21 (2023), 108. https://doi.org/10.28924/2291-8639-21-2023-108.
  16. E. Ali, A. Elshokry, Some Properties of Quasi-Armendariz Rings and Their Generalizations, Asia P. J. Math. 5 (2018), 14–26.
  17. E. Ali, Generalized Reflexive Structures Properties of Crossed Products Type, Eur. J. Pure Appl. Math. 16 (2023), 2156–2168. https://doi.org/10.29020/nybg.ejpam.v16i4.4918.
  18. E. Ali, A. Elshokry, A Note on (S, ω)-Quasi-Armendariz Rings, Palestine J. Math. 12 (2023), 452–464.
  19. C.Y. Hong, N.K. Kim, T.K. Kwak, Ore Extensions of Baer and p.p.-Rings, J. Pure Appl. Algebra. 151 (2000), 215–226. https://doi.org/10.1016/s0022-4049(99)00020-1.
  20. A. Majidinya, A. Moussavi, K. Paykan, Generalized APP-Rings, Commun. Algebra. 41 (2013), 4722–4750. https://doi.org/10.1080/00927872.2011.636414.
  21. B. Stenstrom, Rings of Quotients, Springer-Verlag, Berlin, Heidelberg, 1975.
  22. C.E. Rickart, Banach Algebras With an Adjoint Operation, Ann. Math. 47 (1946), 528–550. https://doi.org/10.2307/1969091.
  23. C. Faith, Rings With Zero Intersection Property on Annihilators: Zip Rings, Publ. Mat. 33 (1989), 329–338. https://www.jstor.org/stable/43737136.
  24. J.J. Rotman, An Introduction to Homological Algebra, Academic Press, San Diego, 1993.
  25. G.F. Birkenmeier, J.Y. Kim, J.K. Park, Principally Quasi-Baer Rings, Commun. Algebra. 29 (2001), 639–660. https://doi.org/10.1081/agb-100001530.
  26. H. Al-Ezeh, On Some Properties of Polynomials Rings, Int. J. Math. Math. Sci. 10 (1987), 311–314. https://doi.org/10.1155/s0161171287000371.
  27. H. Al-Ezeh, Two Properties of the Power Series Ring, Int. J. Math. Math. Sci. 11 (1988), 9–13. https://doi.org/10.1155/s0161171288000031.
  28. H. Tominaga, On S-Unital Rings, Math. J. Okayama Univ. 18 (1976), 117–134.
  29. H. Kim and T.I. Kwon. PF-Rings of Generalized Power Series, Kyungpook Math. J. 47 (2007), 127–132.
  30. I. Kaplansky, Rings of Operators, Benjamin, New York, (1965).
  31. J.H. Kim, A Note on the Quotient Ring R((X)) of the Power Series Ring R[[X]], J. Korean Math. Soc. 25 (1998), 265–271.
  32. R. Zhao, Left APP-Rings of Skew Generalized Power Series, J. Algebra Appl. 10 (2011), 891–900. https://doi.org/10.1142/s0219498811005014.
  33. W.E. Clark, Twisted Matrix Units Semigroup Algebras, Duke Math. J. 34 (1967), 417–423. https://doi.org/10.1215/s0012-7094-67-03446-1.
  34. Z.K. Liu, J. Ahsan, PP-Rings of Generalized Power Series, Acta Math. Sinica. 16 (2000), 573–578. https://doi.org/10.1007/s1011400000884.
  35. Z.K. Liu, Z. Renyu, a Generalization OF PP-Rings and p.q.-Baer Rings, Glasgow Math. J. 48 (2006), 217–229. https://doi.org/10.1017/s0017089506003016.