Some Results of Malcev-Neumann Rings
Main Article Content
Abstract
Let us consider the function σ, which maps elements from the group G to the group of automorphisms of the ring R. In this paper, we are studying new conditions under which the Malcev-Neumann ring R∗((G)) is a PS, APP, PF, PP, and a Zip rings, respectively. It has been demonstrated that if R is a reduced ring and σ is weakly rigid, then the Malcev-Neumann ring R∗((G)) over a PS-ring is a PS. Furthermore, if σ is weakly rigid and the ring R satisfies the descending chain condition on left annihilators, then the Malcev-Neumann ring R∗((G)) is a right APP-ring if and only if, for any G-indexed generated right ideal A of R, rR(A) is left s-unital. Additionally, we have proven that if R is a commutative ring and σ is weakly rigid, then the Malcev-Neumann ring R∗((G)) is a PF ring if and only if, for any two G-indexed subsets A and B of R such that B⊆annR(A), there exists c∈annR(A) such that bc = b for all b ∈ B. These results extend the corresponding findings for polynomial rings and Laurent power series rings.
Article Details
References
- L. Makar-Limanov, The Skew Field of Fractions of the Weyl Algebra Contains a Free Noncommutative Subalgebra, Commun. Algebra. 11 (1983), 2003–2006. https://doi.org/10.1080/00927878308822945.
- M. Lorenz, Division Algebras Generated by Finitely Generated Nilpotent Groups, J. Algebra. 85 (1983), 368–381. https://doi.org/10.1016/0021-8693(83)90101-1.
- I.M. Musson, K. Stafford, Malcev-Neumann Group Rings, Commun. Algebra. 21 (1993), 2065–2075. https://doi.org/10.1080/00927879308824665.
- C. Sonin, Krull Dimension of Malcev-Neumann Rings, Commun. Algebra. 26 (1998), 2915–2931. https://doi.org/10.1080/00927879808826317.
- D.S. Passman, Infinite Crossed Pure and Applied Mathematics, 135, Academic Press, Boston, MA, 1989.
- D.S. Passman, The Algebraic Structure of Group Rings, John Wiley, New York, (1977).
- E. Ali, The Reflexive Condition on Skew Monoid Rings, Eur. J. Pure Appl. Math. 16 (2023), 1878–1893.
- Z.K. Liu, Principal Quasi-Baerness of Malcev-Neumann Rings, J. Math. (Wuhan, China), 25 (2005), 237–246.
- Y.V. Merekin, On a Matrix Representation of Recursive Schemes for Word Generation, Southeast Asian Bull. Math. 31 (2007), 1167–1172.
- E. Ali, A. Elshokry, Some Results on a Generalization of Armendariz Rings, Asia Pac. J. Math. 6 (2019), 1. https://doi.org/10.28924/APJM/6-1.
- E. Ali, A Note on Skew Generalized Power Serieswise Reversible Property, Int. J. Anal. Appl. 21 (2023), 69. https://doi.org/10.28924/2291-8639-21-2023-69.
- W.K. Nicholson, J.F. Watters, Rings With Projective Socle, Proc. Amer. Math. Soc. 102 (1988), 443–450.
- X. Weimin, Modules With Projective Socles, Riv. Mat. Univ. Parma, 1(5) (1992), 311–315.
- L. Zhongkui, L. Fang, Ps-Rings of Generalized Power Series, Commun. Algebra. 26 (1998), 2283–2291. https://doi.org/10.1080/00927879808826276.
- E. Ali, On Crossed Product Rings Over p.q.-Baer and Quasi-Baer Rings, Int. J. Anal. Appl. 21 (2023), 108. https://doi.org/10.28924/2291-8639-21-2023-108.
- E. Ali, A. Elshokry, Some Properties of Quasi-Armendariz Rings and Their Generalizations, Asia P. J. Math. 5 (2018), 14–26.
- E. Ali, Generalized Reflexive Structures Properties of Crossed Products Type, Eur. J. Pure Appl. Math. 16 (2023), 2156–2168. https://doi.org/10.29020/nybg.ejpam.v16i4.4918.
- E. Ali, A. Elshokry, A Note on (S, ω)-Quasi-Armendariz Rings, Palestine J. Math. 12 (2023), 452–464.
- C.Y. Hong, N.K. Kim, T.K. Kwak, Ore Extensions of Baer and p.p.-Rings, J. Pure Appl. Algebra. 151 (2000), 215–226. https://doi.org/10.1016/s0022-4049(99)00020-1.
- A. Majidinya, A. Moussavi, K. Paykan, Generalized APP-Rings, Commun. Algebra. 41 (2013), 4722–4750. https://doi.org/10.1080/00927872.2011.636414.
- B. Stenstrom, Rings of Quotients, Springer-Verlag, Berlin, Heidelberg, 1975.
- C.E. Rickart, Banach Algebras With an Adjoint Operation, Ann. Math. 47 (1946), 528–550. https://doi.org/10.2307/1969091.
- C. Faith, Rings With Zero Intersection Property on Annihilators: Zip Rings, Publ. Mat. 33 (1989), 329–338. https://www.jstor.org/stable/43737136.
- J.J. Rotman, An Introduction to Homological Algebra, Academic Press, San Diego, 1993.
- G.F. Birkenmeier, J.Y. Kim, J.K. Park, Principally Quasi-Baer Rings, Commun. Algebra. 29 (2001), 639–660. https://doi.org/10.1081/agb-100001530.
- H. Al-Ezeh, On Some Properties of Polynomials Rings, Int. J. Math. Math. Sci. 10 (1987), 311–314. https://doi.org/10.1155/s0161171287000371.
- H. Al-Ezeh, Two Properties of the Power Series Ring, Int. J. Math. Math. Sci. 11 (1988), 9–13. https://doi.org/10.1155/s0161171288000031.
- H. Tominaga, On S-Unital Rings, Math. J. Okayama Univ. 18 (1976), 117–134.
- H. Kim and T.I. Kwon. PF-Rings of Generalized Power Series, Kyungpook Math. J. 47 (2007), 127–132.
- I. Kaplansky, Rings of Operators, Benjamin, New York, (1965).
- J.H. Kim, A Note on the Quotient Ring R((X)) of the Power Series Ring R[[X]], J. Korean Math. Soc. 25 (1998), 265–271.
- R. Zhao, Left APP-Rings of Skew Generalized Power Series, J. Algebra Appl. 10 (2011), 891–900. https://doi.org/10.1142/s0219498811005014.
- W.E. Clark, Twisted Matrix Units Semigroup Algebras, Duke Math. J. 34 (1967), 417–423. https://doi.org/10.1215/s0012-7094-67-03446-1.
- Z.K. Liu, J. Ahsan, PP-Rings of Generalized Power Series, Acta Math. Sinica. 16 (2000), 573–578. https://doi.org/10.1007/s1011400000884.
- Z.K. Liu, Z. Renyu, a Generalization OF PP-Rings and p.q.-Baer Rings, Glasgow Math. J. 48 (2006), 217–229. https://doi.org/10.1017/s0017089506003016.