F-Modular b-Metric Spaces and Some Analogies of Classical Fixed Point Theorems

Main Article Content

Parveen Tyagi, Surjeet Singh Chauhan (Gonder), Naveen Mani, Rahul Shukla


The main aim of this study is to provide a novel concept of F-modular b-metric spaces. Within this comprehensive framework, we establish three well-known fixed point theorems for self-maps. The results we have obtained broaden and enrich prior findings in the field of fixed point theory. To support our arguments, we provide four concrete examples along with graphical representations.

Article Details


  1. M.M. Fréchet, Sur Quelques Points du Calcul Fonctionnel, Rend. Circ. Mat. Palermo. 22 (1906), 1–72. https://doi.org/10.1007/BF03018603.
  2. S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
  3. R. Kannan, Some Results on Fixed Points, Bull. Calc. Math. Soc. 60 (1968), 71–76.
  4. B.E. Rhoades, Some Theorems on Weakly Contractive Maps, Nonlinear Anal.: Theory Methods Appl. 47 (2001), 2683–2693. https://doi.org/10.1016/S0362-546X(01)00388-1.
  5. P. Shahi, J. Kaur, S.S. Bhatia, on Fixed Points of Generalized α − ϕ Contractive Type Mappings in Partial Metric Spaces, Int. J. Anal. Appl. 12 (2016), 38–48.
  6. V. Gupta, Ramandeep, N. Mani, A.K. Tripathi, Some Fixed Point Result Involving Generalized Altering Distance Function, Procedia Computer Sci. 79 (2016), 112–117. https://doi.org/10.1016/j.procs.2016.03.015.
  7. V. Bhardwaj, V. Gupta, N. Mani, Common Fixed Point Theorems Without Continuity and Compatible Property of Maps, Bol. Soc. Paran. Mat. 35 (2017), 67–77. https://doi.org/10.5269/bspm.v35i3.28636.
  8. N. Mani, Generalized C ψ β −Rational Contraction and Fixed Point Theorem With Application to Second Order Differential Equation, Math. Morav. 22 (2018), 43–54. https://doi.org/10.5937/matmor1801043m.
  9. N. Bourbaki, Eléments de Mathématique, Topologie Générale, Hermann, Paris, (1974).
  10. I.A. Bakhtin, The Contraction Mapping in Almost Metric Spaces, Funct. Ana. Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37.
  11. S. Czerwik, Contraction Mappings in b−Metric Spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5–11. http://dml.cz/dmlcz/120469.
  12. S. Gähler, 2-Metrische Räume und Ihre Topologische Struktur, Math. Nachr. 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109.
  13. B. Dhage, Generalized Metric Spaces and Mappings With Fixed Points, Bull. Calcutta Math. Soc. 84 (1992), 329–336.
  14. Z. Mustafa, B. Sims, A New Approach to Generalized Metric Spaces, J. Nonlinear Convex Anal. 7 (2006), 289–297.
  15. A. Branciari, A Fixed Point Theorem of Banach–Caccioppoli Type on a Class of Generalized Metric Spaces, Publ. Math. Debrecen. 57 (2000), 31–37. https://doi.org/10.5486/pmd.2000.2133.
  16. H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co. Ltd., Tokyo, (1950).
  17. V.V. Chistyakov, Modular Metric Spaces, I: Basic Concepts, Nonlinear Anal.: Theory Methods Appl. 72 (2010), 1–14. https://doi.org/10.1016/j.na.2009.04.057.
  18. V.V. Chistyakov, Modular Metric Spaces, II: Application to Superposition Operators, Nonlinear Anal.: Theory Methods Appl. 72 (2010), 15–30. https://doi.org/10.1016/j.na.2009.04.018.
  19. M. Jleli, B. Samet, A Generalized Metric Space and Related Fixed Point Theorems, Fixed Point Theory Appl. 2015 (2015), 61. https://doi.org/10.1186/s13663-015-0312-7.
  20. M. Jleli, B. Samet, On a New Generalization of Metric Spaces, J. Fixed Point Theory Appl. 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6.
  21. M.E. Ege, C. Alaca, Some Results for Modular b−Metric Spaces and an Application to System of Linear Equations, Azerbaijan J. Math. 8 (2018), 3–14.
  22. B. Nurwahyu, N. Aris, Firman, Some Results in Function Weighted b−Metric Spaces, AIMS Math. 8 (2023), 8274– 8293. https://doi.org/10.3934/math.2023417.
  23. I. Kramosil, J. Michálek, Fuzzy Metrics and Statistical Metric Spaces, Kybernetika. 11 (1975), 336–344. http://eudml.org/doc/28711.
  24. A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7.
  25. A. Branciari, A Fixed Point Theorem for Mappings Satisfying a General Contractive Condition of Integral Type, Int. J. Math. Math. Sci. 29 (9) (2002), 531–536. https://doi.org/10.1155/S0161171202007524.
  26. A.C. M. Ran, M.C.B. Reurings, A Fixed Point Theorem in Partially Ordered Sets and Some Applications to Matrix Equations, Proc. Amer. Math. Soc. 132 (2004), 1435–1443. https://doi.org/10.1090/S0002-9939-03-07220-4.
  27. J.J. Nieto, R. Rodríguez-López, Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations, Order. 22 (2005), 223–239. https://doi.org/10.1007/s11083-005-9018-5.
  28. V. Gupta, G. Jungck, N. Mani, Some Novel Fixed Point Theorems in Partially Ordered Metric Spaces, AIMS Math. 5 (2020), 4444–4452. https://doi.org/10.3934/math.2020284.
  29. N. Mani, A. Sharma, R. Shukla, Fixed Point Results via Real-Valued Function Satisfying Integral Type Rational Contraction, Abstr. Appl. Anal. 2023 (2023), 2592507. https://doi.org/10.1155/2023/2592507.
  30. N. Mani, S. Beniwal, R. Shukla, M. Pingale, Fixed Point Theory in Extended Parametric Sb-Metric Spaces and Its Applications, Symmetry. 15 (2023), 2136. https://doi.org/10.3390/sym15122136.
  31. W. Orlicz, a Note on Modular Spaces. I, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 157–162.
  32. N. Manav, D. Turkoglu, Common fixed point results on modular F-metric spaces, AIP Conf. Proc. 2183 (2019), 060006. https://doi.org/10.1063/1.5136161.
  33. R. Anna Thirumalai, S. Thalapathiraj, A Novel Approach for Digital Image Compression in Some Fixed Point Results on Complete G−Metric Space Using Comparison Function, Int. J. Anal. Appl. 21 (2023), 110. https://doi.org/10.28924/2291-8639-21-2023-110.
  34. S. Furqan, N. Saleem, S. Sessa, Fuzzy n-Controlled Metric Space, Int. J. Anal. Appl. 21 (2023), 101. https://doi.org/10.28924/2291-8639-21-2023-101.