Single-Valued Neutrosophic Roughness via Ideals
Main Article Content
Abstract
In this paper, we connect the idea of single-valued neutrosophic ideal to the concept of single-valued neutrosophic approximation space to define the concept of single-valued neutrosophic ideal approximation spaces. We present the single-valued neutrosophic ideal approximation interior operator intψΦ and the single-valued neutrosophic ideal approximation closure operator clψΦ, and we present the single-valued neutrosophic ideal approximation preinterior operator pintψΦ and the single-valued neutrosophic ideal approximation pre-closure operator pclψΦ about this concerning single-valued neutrosophic ideal defined on the single-valued neutrosophic approximation space (χ˜,ϕ) related with some single-valued neutrosophic set ψ∈ξχ˜. Also, we present single-valued neutrosophic separation axioms, single-valued neutrosophic connectedness, and single-valued neutrosophic compactness in single-valued neutrosophic approximation spaces and single-valued neutrosophic ideal approximation spaces as well, and prove the associations in between.
Article Details
References
- F. Smarandache, A Unifying Field in Logics, Neutrosophy: Neutrosophic Probability, Set and Logic, American Research Press, Rehoboth, (1999).
- A.A. Salama, F. Smarandache, Neutrosophic Crisp Set Theory, The Educational Publisher, Columbus, 2015.
- A.A. Salama, S.A. Alblowi, Neutrosophic Set and Neutrosophic Topological Spaces, IOSR J. Math. 3 (2012), 31–35.
- H. Wang, F.Y. Smarandache, Q. Zhang, Single valued neutrosophic sets, Multispace Multistruct. 4 (2010), 410–413.
- Y. Saber, F. Alsharari, F. Smarandache, On Single-Valued Neutrosophic Ideals in Šostak Sense, Symmetry. 12 (2020), 193. https://doi.org/10.3390/sym12020193.
- Y. Saber, F. Alsharari, F. Smarandache, M. Abdel-Sattar, Connectedness and Stratification of Single-Valued Neutrosophic Topological Spaces, Symmetry. 12 (2020), 1464. https://doi.org/10.3390/sym12091464.
- F. Alsharari, Y.M. Saber, F. Smarandache, Compactness on Single-Valued Neutrosophic Ideal Topological Spaces, Neutrosophic Sets Syst. 41 (2021), 127–145.
- Y. Saber, F. Alsharari, F. Smarandache, M. Abdel-Sattar, On Single Valued Neutrosophic Regularity Spaces, Computer Model. Eng. Sci. 130 (2022), 1625–1648. https://doi.org/10.32604/cmes.2022.017782.
- F. Alsharari, Y.M. Saber, GΘ*τiτj-Fuzzy Closure Operator, New Math. Nat. Comput. 16 (2020), 123–141. https://doi.org/10.1142/s1793005720500088.
- F. Alsharari, Y.M. Saber, Separation axioms on fuzzy ideal topological spaces in Šostak sense, Int. J. Adv. Appl. Sci. 7 (2020), 78–84. https://doi.org/10.21833/ijaas.2020.02.011.
- Y.M. Saber, F. Alsharari, Generalized Fuzzy Ideal Closed Sets on Fuzzy Topological Spaces in Šostak Sense, Int. J. Fuzzy Logic Intell. Syst. 18 (2018), 161–166. https://doi.org/10.5391/ijfis.2018.18.3.161.
- Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci. 11 (1982), 341–356. https://doi.org/10.1007/bf01001956.
- X. Chen, Q. Li, Construction of Rough Approximations in Fuzzy Setting, Fuzzy Sets Syst. 158 (2007), 2641–2653. https://doi.org/10.1016/j.fss.2007.05.016.
- D. Dubois, H. Prade, Rough Fuzzy Sets and Fuzzy Rough Sets, Int. J. Gen. Syst. 17 (1990), 191–209. https://doi.org/10.1080/03081079008935107.
- Z. Li, T. Xie, Roughness of Fuzzy Soft Sets and Related Results, Int. J. Comput. Intell. Syst. 8 (2015), 278–296. https://doi.org/10.1080/18756891.2015.1001951.
- G. Liu, Generalized Rough Sets Over Fuzzy Lattices, Inf. Sci. 178 (2008), 1651–1662. https://doi.org/10.1016/j.ins.2007.11.010.
- W. Wu, Generalized Fuzzy Rough Sets, Inf. Sci. 151 (2003), 263–282. https://doi.org/10.1016/s0020-0255(02)00379-1.
- Z. Pei, D. Pei, L. Zheng, Topology vs Generalized Rough Sets, Int. J. Approx. Reason. 52 (2011), 231–239. https://doi.org/10.1016/j.ijar.2010.07.010.
- I. Ibedou, S.E. Abbas, Fuzzy Rough Sets With a Fuzzy Ideal, J. Egypt. Math. Soc. 28 (2020), 36. https://doi.org/10.1186/s42787-020-00096-2.
- M. Irfan Ali, A Note on Soft Sets, Rough Soft Sets and Fuzzy Soft Sets, Appl. Soft Comput. 11 (2011), 3329–3332. https://doi.org/10.1016/j.asoc.2011.01.003.
- D. Boixader, J. Jacas, J. Recasens, Upper and Lower Approximations of Fuzzy Sets, Int. J. Gen. Syst. 29 (2000), 555–568. https://doi.org/10.1080/03081070008960961.
- W.Z. Wu, A Study on Relationship Between Fuzzy Rough Approximation Operators and Fuzzy Topological Spaces, in: L. Wang, Y. Jin (Eds.), Fuzzy Systems and Knowledge Discovery, Springer, Berlin, Heidelberg, 2005: pp. 167–174. https://doi.org/10.1007/11539506_21.
- A.M. Abd El-Latif, Generalized Soft Rough Sets and Generated Soft Ideal Rough Topological Spaces, J. Intell. Fuzzy Syst. 34 (2018), 517–524. https://doi.org/10.3233/jifs-17610.
- J. Mahanta, P.K. Das, Fuzzy Soft Topological Spaces, J. Intell. Fuzzy Syst. 32 (2017), 443–450. https://doi.org/10.3233/jifs-152165.
- C.L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24 (1968), 182–190. https://doi.org/10.1016/0022-247x(68)90057-7.
- J. Ye, A Multicriteria Decision-Making Method Using Aggregation Operators for Simplified Neutrosophic Sets, J. Intell. Fuzzy Syst. 26 (2014), 2459–2466. https://doi.org/10.3233/ifs-130916.
- H.L. Yang, Z.L. Guo, Y. She, X. Liao, On Single Valued Neutrosophic Relations, J. Intell. Fuzzy Syst. 30 (2016), 1045–1056. https://doi.org/10.3233/ifs-151827.