Fuzzy (Almost, δ) Ideal Continuous Mappings
Main Article Content
Abstract
In this paper, we introduce the concept of fuzzy δ-ideal continuous, fuzzy θ-ideal continuous, fuzzy strongly δ-ideal continuous and fuzzy almost ideal continuous mappings in fuzzy ideal topological spaces given the definition of Sostak. In addition, we study some properties between them.
Article Details
References
- C.L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24 (1968), 182–190. https://doi.org/10.1016/0022-247x(68)90057-7.
- K.C. Chattopadhyay, R.N. Hazra, S.K. Samanta, Gradation of Openness: Fuzzy Topology, Fuzzy Sets Syst. 49 (1992), 237–242. https://doi.org/10.1016/0165-0114(92)90329-3.
- K.C. Chattopadhyay, S.K. Samanta, Fuzzy Topology: Fuzzy Closure Operator, Fuzzy Compactness and Fuzzy Connectedness, Fuzzy Sets Syst. 54 (1993), 207–212. https://doi.org/10.1016/0165-0114(93)90277-o.
- A.M. Zahran, S.E. Abbas, S.A. Abd El-baki, Y.M. Saber, Decomposition of Fuzzy Continuity and Fuzzy Ideal Continuity via Fuzzy Idealization, Chaos Solitons Fractals. 42 (2009), 3064–3077. https://doi.org/10.1016/j.chaos.2009.04.010.
- M.K. El Gayyar, E.E. Kerre, A.A. Ramadan, Almost Compactness and Near Compactness in Smooth Topological Spaces, Fuzzy Sets Syst. 62 (1994), 193–202. https://doi.org/10.1016/0165-0114(94)90059-0.
- M.S. EL Naschie, O.G. Rossle, Information and Diffusion in Quantum Physics, Chaos Solitons Fractals. 7 (1996), 7–10.
- M.S. El Naschie, On the Uncertainty of Cantorian Geometry and the Two-Slit Experiment, Chaos Solitons Fractals. 9 (1998), 517–529. https://doi.org/10.1016/s0960-0779(97)00150-1.
- M.S. El Naschie, On the Unification of Heterotic Strings, M Theory and E (∞) Theory, Chaos Solitons Fractals. 11 (2000), 2397–2408. https://doi.org/10.1016/s0960-0779(00)00108-9.
- M.S. El Naschie, A Review of E Infinity Theory and the Mass Spectrum of High Energy Particle Physics, Chaos, Solitons Fractals. 19 (2004), 209–236. https://doi.org/10.1016/s0960-0779(03)00278-9.
- M.S. El Naschie, Quantum Gravity From Descriptive Set Theory, Chaos Solitons Fractals 19 (2004), 1339–1344. https://doi.org/10.1016/j.chaos.2003.08.009.
- M.S. El Naschie, Quantum Gravity, Clifford Algebras, Fuzzy Set Theory and the Fundamental Constants of Nature, Chaos Solitons Fractals 20 (2004), 437–450. https://doi.org/10.1016/j.chaos.2003.09.029.
- M.S. El Naschie, The Symplictic Vacuum, Exotic Quasi Particles and Gravitational Instanton, Chaos Solitons Fractals. 22 (2004), 1–11. https://doi.org/10.1016/j.chaos.2004.01.015.
- M.S. El Naschie, On a Fuzzy Kähler-like Manifold which is Consistent with the Two Slit Experiment, Int. J. Nonlinear Sci. Numer. Simul. 6 (2005), 95–98. https://doi.org/10.1515/ijnsns.2005.6.2.95.
- M.S. El Naschie, Topics in the mathematical physics of E-infinity theory, Chaos, Solitons Fractals. 30 (2006), 656–663. https://doi.org/10.1016/j.chaos.2006.04.043.
- M.S. El Naschie, Elementary Prerequisites for E-Infinity, Chaos Solitons Fractals. 30 (2006), 579–605. https://doi.org/10.1016/j.chaos.2006.03.030.
- M.S. El Naschie, Advanced Prerequisite for E-Infinity Theory, Chaos Solitons Fractals. 30 (2006), 636–641. https://doi.org/10.1016/j.chaos.2006.04.044.
- E. Hatir, S. Jafari, Fuzzy Semi-I-Open Sets and Fuzzy Semi-I-Continuity via Fuzzy Idealization, Chaos Solitons Fractals. 34 (2007), 1220–1224. https://doi.org/10.1016/j.chaos.2006.03.116.
- B. Hutton, I. Reilly, Separation Axioms in Fuzzy Topological Spaces, Fuzzy Sets Syst. 3 (1980), 93—104.
- K.C. Kim, J.M. Ko, r-Generalized Fuzzy Closed Sets, J Fuzzy Math. 12 (2004), 7–21.
- Y.C. Kim, r-Fuzzy Semi-Open Sets in Fuzzy Bitopolgical Space, Far East J. Math. Sci. 11 (2000), 221–236.
- R. Lowen, Fuzzy Topological Spaces and Fuzzy Compactness, J. Math. Anal. Appl. 56 (1976), 621–633. https://doi.org/10.1016/0022-247x(76)90029-9.
- A.A. Nasef, R.A. Mahmoud, Some Topological Applications via Fuzzy Ideals, Chaos Solitons Fractals. 13 (2002), 825–831. https://doi.org/10.1016/s0960-0779(01)00058-3.
- A.A. Ramadan, Smooth Topological Spaces, Fuzzy Sets Syst. 48 (1992), 371–375. https://doi.org/10.1016/0165-0114(92)90352-5.
- A.A. Ramadan, S.E. Abbas, K.C. Kim, Fuzzy Irresolute Functions in Smooth Fuzzy Topological Space, J Fuzzy Math. 9 (2001), 865–877.
- A.A. Ramadan, S.E. Abbas, Y.C. Kim, On Weaker Forms of Continuity is Sˆostak’s Fuzzy Topology, Indian J. Pure Appl. 34 (2003), 311–333.
- A.A. Ramadan, M.A. Abde-Sattar, M.K. El Gayyar, Smooth L-ideal, Quaestiones Mathematicae, 2000.
- D. Sarkar, Fuzzy Ideal Theory Fuzzy Local Function and Generated Fuzzy Topology, Fuzzy Sets Syst. 87 (1997), 117–123. https://doi.org/10.1016/s0165-0114(96)00032-2.
- A.P. Sostak, On a Fuzzy Topological Structure, Rend. Circ. Mat. Pal. Ser. II. Suppl. 11 (1985), 89-–103.
- A.P. Sostak, On Some Modifications of Fuzzy Topologies, Mat. Vesnik. 41 (1989), 51—64.
- F. Alsharari, Y.M. Saber, GΘ*τjτi -Fuzzy Closure Operator, New Math. Nat. Comput. 16 (2020), 123–141. https://doi.org/10.1142/s1793005720500088.
- F. Alsharari, Y.M. Saber, F. Smarandache, Compactness on Single-Valued Neutrosophic Ideal Topological Spaces, Neutrosophic Sets Syst. 41 (2021), 127—145.
- Y.M. Saber, M.A. Abdel-Sattar, Ideals on Fuzzy Topological Spaces, Appl. Math. Sci. 8 (2014), 1667–1691. https://doi.org/10.12988/ams.2014.33194.
- Y. Saber, F. Alsharari, F. Smarandache, An Introduction to Single-Valued Neutrosophic Soft Topological Structure, Soft Comput. 26 (2022), 7107–7122. https://doi.org/10.1007/s00500-022-07150-4.
- Y.M. Saber, F. Alsharari, Generalized Fuzzy Ideal Closed Sets on Fuzzy Topological Spaces in Sostak Sense, Int. J. Fuzzy Log. Intell. Syst. 18 (2018), 161–166. https://doi.org/10.5391/ijfis.2018.18.3.161.
- Y. Saber, F. Alsharari, F. Smarandache, On Single-Valued Neutrosophic Ideals in Sostak Sense, Symmetry. 12 (2020), 193. https://doi.org/10.3390/sym12020193.
- Y. Saber, F. Alsharari, F. Smarandache, M. Abdel-Sattar, Connectedness and Stratification of Single-Valued Neutrosophic Topological Spaces, Symmetry. 12 (2020), 1464. https://doi.org/10.3390/sym12091464.
- Y. Saber, F. Alsharari, F. Smarandache, M. Abdel-Sattar, On Single Valued Neutrosophic Regularity Spaces, Computer Model. Eng. Sci. 130 (2022), 1625–1648. https://doi.org/10.32604/cmes.2022.017782.
- Y. Saber, Connectedness in Single-Valued Neutrosophic Soft Grill Topological Spaces, Int. J. Anal. Appl. 21 (2023), 137. https://doi.org/10.28924/2291-8639-21-2023-137.
- Y. Saber, H. Alohali, T. Elmasry, F. Smarandache, On Single-Valued Neutrosophic Soft Uniform Spaces, AIMS Math. 9 (2024), 412–439. https://doi.org/10.3934/math.2024023.