Solving a Nonlinear Fractional Integral Equation by Fixed Point Approaches Using Auxiliary Functions Under Measure of Noncompactness
Main Article Content
Abstract
This manuscript is devoted to ensure the existence of a solution to nonlinear fractional integral equations with three variables under a measure of noncompactness. In order to accomplish our main goal, we develop a new fixed point theorem that generalizes Darbo’s fixed point theorem by utilizing a measure of noncompactness and a new contraction operator. A related tripled FP theorem is also obtained. Finally, we use this generalized Darbo’s fixed point theorem to solve a nonlinear fractional integral equation involving three variables, and an example to demonstrate our results is presented.
Article Details
References
- U.N. Katugampola, A New Approach to Generalized Fractional Derivatives, Bull. Math. Anal. Appl. 6 (2014), 1–15.
- N.H. Abel, Oplosning af et par Opgaver ved Hjelp af Bestemte Integraler, Mag. Naturvidenskaberne, 2 (1823), 55–68.
- H.A. Hammad, H. Aydi, M. De la Sen, New Contributions for Tripled Fixed Point Methodologies via a Generalized Variational Principle With Applications, Alexandria Eng. J. 61 (2022), 2687–2696. https://doi.org/10.1016/j.aej.2021.07.042.
- H.A. Hammad, M.D. La Sen, A Technique of Tripled Coincidence Points for Solving a System of Nonlinear Integral Equations in POCML Spaces, J. Inequal. Appl. 2020 (2020), 211. https://doi.org/10.1186/s13660-020-02477-8.
- H.A. Hammad, M. De la Sen, Analytical Solution of Urysohn Integral Equations by Fixed Point Technique in Complex Valued Metric Spaces, Mathematics. 7 (2019), 852. https://doi.org/10.3390/math7090852.
- H.A. Hammad, M. De la Sen, Stability and Controllability Study for Mixed Integral Fractional Delay Dynamic Systems Endowed with Impulsive Effects on Time Scales, Fractal Fract. 7 (2023), 92. https://doi.org/10.3390/fractalfract7010092.
- H.A. Hammad, H. Aydi, H. I¸sık, M. De la Sen, Existence and Stability Results for a Coupled System of Impulsive Fractional Differential Equations With Hadamard Fractional Derivatives, AIMS Math. 8 (2023), 6913–6941. https://doi.org/10.3934/math.2023350.
- H.A. Hammad, M. De la Sen and H. Aydi, Generalized Dynamic Process for an Extended Multi-Valued F−Contraction in Metric-Like Spaces With Applications, Alexandria Eng. J. 59 (2020), 3817–3825. https://doi.org/10.1016/j.aej.2020.06.037.
- H.A. Hammad, H. Aydi, M. Zayed, Involvement of the Topological Degree Theory for Solving a Tripled System of Multi-Point Boundary Value Problems, AIMS Math. 8 (2022), 2257–2271. https://doi.org/10.3934/math.2023117.
- H.A. Hammad, M.F. Bota, L. Guran, Wardowski’s Contraction and Fixed Point Technique for Solving Systems of Functional and Integral Equations, J. Funct. Spaces. 2021 (2021), 7017046. https://doi.org/10.1155/2021/7017046.
- H.A. Hammad, H. Aydi, Y.U. Gaba, Exciting Fixed Point Results on a Novel Space with Supportive Applications, J. Funct. Spaces. 2021 (2021), 6613774. https://doi.org/10.1155/2021/6613774.
- S. Chandrasekhar, Radiative Transfer, Dover Publications, New York, (1960).
- R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, (2000).
- A. Ahmadian, S. Rezapour, S. Salahshour, M.E. Samei, Solutions of sum-type singular fractional q integrodifferential equation with m-point boundary value problem using quantum calculus, Math. Meth. Appl. Sci. 43 (2020), 8980–9004. https://doi.org/10.1002/mma.6591.
- R. Arab, H.K. Nashine, N.H. Can, T.T. Binh, Solvability of Functional-Integral Equations (Fractional Order) Using Measure of Noncompactness, Adv. Differ. Equ. 2020 (2020), 12. https://doi.org/10.1186/s13662-019-2487-4.
- A.K. Dizicheh, S. Salahshour, A. Ahmadian, D. Baleanu, A Novel Algorithm Based on the Legendre Wavelets Spectral Technique for Solving the Lane-emden Equations, Appl. Numer. Math. 153 (2020), 443–456. https://doi.org/10.1016/j.apnum.2020.02.016.
- J.J. Nieto, B. Samet, Solvability of an Implicit Fractional Integral Equation via a Measure of Noncompactness Argument, Acta Math. Sci. 37 (2017), 195–204. https://doi.org/10.1016/s0252-9602(16)30125-4.
- H.A. Hammad, A.A. Khalil, The Technique of Quadruple Fixed Points for Solving Functional Integral Equations under a Measure of Noncompactness, Mathematics. 8 (2020), 2130. https://doi.org/10.3390/math8122130.
- H.A. Hammad, M. Zayed, Solving Systems of Coupled Nonlinear Atangana–baleanu-Type Fractional Differential Equations, Bound. Value Probl. 2022 (2022), 101. https://doi.org/10.1186/s13661-022-01684-0.
- Humaira, H.A. Hammad, M. Sarwar, M. De la Sen, Existence Theorem for a Unique Solution to a Coupled System of Impulsive Fractional Differential Equations in Complex-Valued Fuzzy Metric Spaces, Adv. Differ. Equ. 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0.
- M. Rabbani, A. Das, B. Hazarika, R. Arab, Existence of Solution for Two Dimensional Nonlinear Fractional Integral Equation by Measure of Noncompactness and Iterative Algorithm to Solve It, J. Comput. Appl. Math. 370 (2020), 112654. https://doi.org/10.1016/j.cam.2019.112654.
- H. Sahihi, T. Allahviranloo, S. Abbasbandy, Solving System of Second-Order Bvps Using a New Algorithm Based on Reproducing Kernel Hilbert Space, Appl. Numer. Math. 151 (2020), 27–39. https://doi.org/10.1016/j.apnum.2019.12.008.
- S. Salahshour, A. Ahmadian, M. Salimi, B.A. Pansera, M. Ferrara, A New Lyapunov Stability Analysis of FractionalOrder Systems With Nonsingular Kernel Derivative, Alexandria Eng. J. 59 (2020), 2985–2990. https://doi.org/10.1016/j.aej.2020.03.040.
- A. Aghajani, R. Allahyari, M. Mursaleen, A Generalization of Darbo’s Theorem With Application to the Solvability of Systems of Integral Equations, J. Comput. Appl. Math. 260 (2014), 68–77. https://doi.org/10.1016/j.cam.2013.09.039.
- M. Mursaleen, S.A. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in `p spaces, Nonlinear Anal.: Theory Meth. Appl. 75 (2012), 2111–2115. https://doi.org/10.1016/j.na.2011.10.011.
- V. Parvaneh, N. Hussain, A. Mukheimer, H. Aydi, On Fixed Point Results for Modified JS-Contractions with Applications, Axioms. 8 (2019), 84. https://doi.org/10.3390/axioms8030084.
- H. I¸sik, S. Banaei, F. Golkarmanesh, V. Parvaneh, C. Park, M. Khorshidi, On New Extensions of Darbo’s Fixed Point Theorem with Applications, Symmetry. 12 (2020), 424. https://doi.org/10.3390/sym12030424.
- B. Hazarika, H.M. Srivastava, R. Arab, M. Rabbani, Existence of Solution for an Infinite System of Nonlinear Integral Equations via Measure of Noncompactness and Homotopy Perturbation Method to Solve It, J. Comput. Appl. Math. 343 (2018), 341–352. https://doi.org/10.1016/j.cam.2018.05.011.
- V. Berinde, M. Borcut, Tripled Fixed Point Theorems for Contractive Type Mappings in Partially Ordered Metric Spaces, Nonlinear Anal.: Theory Meth. Appl. 74 (2011), 4889–4897. https://doi.org/10.1016/j.na.2011.03.032.
- R.P. Agarwal, D. O’Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, (2004).
- G. Darbo, Punti Uniti in Trasformazioni a Codominio Non Compatto, Rend. Sem. Mat. Univ. Padova, 24 (1955), 84–92.
- J. Banas, K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and AppliedMathematics, vol. 60. Marcel Dekker, New York, (1980).
- S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, Yverdon, (1993).
- J. Banas, O. Leszek, Measure of Noncompactness Related to Monotonicity, Comment. Math. 41 (2001), 13–23.