Solving a Nonlinear Fractional Integral Equation by Fixed Point Approaches Using Auxiliary Functions Under Measure of Noncompactness

Main Article Content

Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen

Abstract

This manuscript is devoted to ensure the existence of a solution to nonlinear fractional integral equations with three variables under a measure of noncompactness. In order to accomplish our main goal, we develop a new fixed point theorem that generalizes Darbo’s fixed point theorem by utilizing a measure of noncompactness and a new contraction operator. A related tripled FP theorem is also obtained. Finally, we use this generalized Darbo’s fixed point theorem to solve a nonlinear fractional integral equation involving three variables, and an example to demonstrate our results is presented.

Article Details

References

  1. U.N. Katugampola, A New Approach to Generalized Fractional Derivatives, Bull. Math. Anal. Appl. 6 (2014), 1–15.
  2. N.H. Abel, Oplosning af et par Opgaver ved Hjelp af Bestemte Integraler, Mag. Naturvidenskaberne, 2 (1823), 55–68.
  3. H.A. Hammad, H. Aydi, M. De la Sen, New Contributions for Tripled Fixed Point Methodologies via a Generalized Variational Principle With Applications, Alexandria Eng. J. 61 (2022), 2687–2696. https://doi.org/10.1016/j.aej.2021.07.042.
  4. H.A. Hammad, M.D. La Sen, A Technique of Tripled Coincidence Points for Solving a System of Nonlinear Integral Equations in POCML Spaces, J. Inequal. Appl. 2020 (2020), 211. https://doi.org/10.1186/s13660-020-02477-8.
  5. H.A. Hammad, M. De la Sen, Analytical Solution of Urysohn Integral Equations by Fixed Point Technique in Complex Valued Metric Spaces, Mathematics. 7 (2019), 852. https://doi.org/10.3390/math7090852.
  6. H.A. Hammad, M. De la Sen, Stability and Controllability Study for Mixed Integral Fractional Delay Dynamic Systems Endowed with Impulsive Effects on Time Scales, Fractal Fract. 7 (2023), 92. https://doi.org/10.3390/fractalfract7010092.
  7. H.A. Hammad, H. Aydi, H. I¸sık, M. De la Sen, Existence and Stability Results for a Coupled System of Impulsive Fractional Differential Equations With Hadamard Fractional Derivatives, AIMS Math. 8 (2023), 6913–6941. https://doi.org/10.3934/math.2023350.
  8. H.A. Hammad, M. De la Sen and H. Aydi, Generalized Dynamic Process for an Extended Multi-Valued F−Contraction in Metric-Like Spaces With Applications, Alexandria Eng. J. 59 (2020), 3817–3825. https://doi.org/10.1016/j.aej.2020.06.037.
  9. H.A. Hammad, H. Aydi, M. Zayed, Involvement of the Topological Degree Theory for Solving a Tripled System of Multi-Point Boundary Value Problems, AIMS Math. 8 (2022), 2257–2271. https://doi.org/10.3934/math.2023117.
  10. H.A. Hammad, M.F. Bota, L. Guran, Wardowski’s Contraction and Fixed Point Technique for Solving Systems of Functional and Integral Equations, J. Funct. Spaces. 2021 (2021), 7017046. https://doi.org/10.1155/2021/7017046.
  11. H.A. Hammad, H. Aydi, Y.U. Gaba, Exciting Fixed Point Results on a Novel Space with Supportive Applications, J. Funct. Spaces. 2021 (2021), 6613774. https://doi.org/10.1155/2021/6613774.
  12. S. Chandrasekhar, Radiative Transfer, Dover Publications, New York, (1960).
  13. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, (2000).
  14. A. Ahmadian, S. Rezapour, S. Salahshour, M.E. Samei, Solutions of sum-type singular fractional q integrodifferential equation with m-point boundary value problem using quantum calculus, Math. Meth. Appl. Sci. 43 (2020), 8980–9004. https://doi.org/10.1002/mma.6591.
  15. R. Arab, H.K. Nashine, N.H. Can, T.T. Binh, Solvability of Functional-Integral Equations (Fractional Order) Using Measure of Noncompactness, Adv. Differ. Equ. 2020 (2020), 12. https://doi.org/10.1186/s13662-019-2487-4.
  16. A.K. Dizicheh, S. Salahshour, A. Ahmadian, D. Baleanu, A Novel Algorithm Based on the Legendre Wavelets Spectral Technique for Solving the Lane-emden Equations, Appl. Numer. Math. 153 (2020), 443–456. https://doi.org/10.1016/j.apnum.2020.02.016.
  17. J.J. Nieto, B. Samet, Solvability of an Implicit Fractional Integral Equation via a Measure of Noncompactness Argument, Acta Math. Sci. 37 (2017), 195–204. https://doi.org/10.1016/s0252-9602(16)30125-4.
  18. H.A. Hammad, A.A. Khalil, The Technique of Quadruple Fixed Points for Solving Functional Integral Equations under a Measure of Noncompactness, Mathematics. 8 (2020), 2130. https://doi.org/10.3390/math8122130.
  19. H.A. Hammad, M. Zayed, Solving Systems of Coupled Nonlinear Atangana–baleanu-Type Fractional Differential Equations, Bound. Value Probl. 2022 (2022), 101. https://doi.org/10.1186/s13661-022-01684-0.
  20. Humaira, H.A. Hammad, M. Sarwar, M. De la Sen, Existence Theorem for a Unique Solution to a Coupled System of Impulsive Fractional Differential Equations in Complex-Valued Fuzzy Metric Spaces, Adv. Differ. Equ. 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0.
  21. M. Rabbani, A. Das, B. Hazarika, R. Arab, Existence of Solution for Two Dimensional Nonlinear Fractional Integral Equation by Measure of Noncompactness and Iterative Algorithm to Solve It, J. Comput. Appl. Math. 370 (2020), 112654. https://doi.org/10.1016/j.cam.2019.112654.
  22. H. Sahihi, T. Allahviranloo, S. Abbasbandy, Solving System of Second-Order Bvps Using a New Algorithm Based on Reproducing Kernel Hilbert Space, Appl. Numer. Math. 151 (2020), 27–39. https://doi.org/10.1016/j.apnum.2019.12.008.
  23. S. Salahshour, A. Ahmadian, M. Salimi, B.A. Pansera, M. Ferrara, A New Lyapunov Stability Analysis of FractionalOrder Systems With Nonsingular Kernel Derivative, Alexandria Eng. J. 59 (2020), 2985–2990. https://doi.org/10.1016/j.aej.2020.03.040.
  24. A. Aghajani, R. Allahyari, M. Mursaleen, A Generalization of Darbo’s Theorem With Application to the Solvability of Systems of Integral Equations, J. Comput. Appl. Math. 260 (2014), 68–77. https://doi.org/10.1016/j.cam.2013.09.039.
  25. M. Mursaleen, S.A. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in `p spaces, Nonlinear Anal.: Theory Meth. Appl. 75 (2012), 2111–2115. https://doi.org/10.1016/j.na.2011.10.011.
  26. V. Parvaneh, N. Hussain, A. Mukheimer, H. Aydi, On Fixed Point Results for Modified JS-Contractions with Applications, Axioms. 8 (2019), 84. https://doi.org/10.3390/axioms8030084.
  27. H. I¸sik, S. Banaei, F. Golkarmanesh, V. Parvaneh, C. Park, M. Khorshidi, On New Extensions of Darbo’s Fixed Point Theorem with Applications, Symmetry. 12 (2020), 424. https://doi.org/10.3390/sym12030424.
  28. B. Hazarika, H.M. Srivastava, R. Arab, M. Rabbani, Existence of Solution for an Infinite System of Nonlinear Integral Equations via Measure of Noncompactness and Homotopy Perturbation Method to Solve It, J. Comput. Appl. Math. 343 (2018), 341–352. https://doi.org/10.1016/j.cam.2018.05.011.
  29. V. Berinde, M. Borcut, Tripled Fixed Point Theorems for Contractive Type Mappings in Partially Ordered Metric Spaces, Nonlinear Anal.: Theory Meth. Appl. 74 (2011), 4889–4897. https://doi.org/10.1016/j.na.2011.03.032.
  30. R.P. Agarwal, D. O’Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, (2004).
  31. G. Darbo, Punti Uniti in Trasformazioni a Codominio Non Compatto, Rend. Sem. Mat. Univ. Padova, 24 (1955), 84–92.
  32. J. Banas, K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and AppliedMathematics, vol. 60. Marcel Dekker, New York, (1980).
  33. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, Yverdon, (1993).
  34. J. Banas, O. Leszek, Measure of Noncompactness Related to Monotonicity, Comment. Math. 41 (2001), 13–23.