The Convergence Solution of Mixed Variational-Hemivariational Inequality Problems
Main Article Content
Abstract
In this paper, we considered a mixed variational-hemivariational inequality problem in a reflexive Banach space with a set of constraints, a nonlinear operator, a sequence generated for data perturbation, and a parameter. We proved the existence and uniqueness of the solution for the problem and its perturbation. The research focuses on the strong convergence of the sequences suggested by the problem.
Article Details
References
- P.D. Panagiotopoulos, Hemivariational Inequalities, in: Hemivariational Inequalities, Springer, Berlin, Heidelberg, 1993: pp. 99–134. https://doi.org/10.1007/978-3-642-51677-1_4.
- S. Migórski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems, Springer, New York, 2013. https://doi.org/10.1007/978-1-4614-4232-5.
- M. Sofonea, S. Migórski, Variational-Hemivariational Inequalities with Applications, Chapman and Hall/CRC, 2018. https://doi.org/10.1201/9781315153261.
- M. Sofonea, Y.B. Xiao, Tykhonov Well-Posedness of Elliptic Variational-Hemivariational Inequalities, Elec. J. Diff. Equ. 2019 (2019), 64.
- R. Lucchetti, F. Patrone, A Characterization of Tyhonov Well-Posedness for Minimum Problems, with Applications to Variational Inequalities, Numer. Funct. Anal. Optim. 3 (1981), 461–476. https://doi.org/10.1080/01630568108816100.
- S.S. Chang, Salahuddin, L. Wang, X.R. Wang, L.C. Zhao, Well-Posedness for Generalized (η, g,ϕ)-Mixed Vector Variational-Type Inequality and Optimization Problems, J. Ineq. Appl. 2019 (2019), 238. https://doi.org/10.1186/s13660-019-2194-4.
- D. Goeleven, D. Mentagui, Well-Posed Hemivariational Inequalities, Numerical Functional Analysis and Optimization 16 (1995), 909–921. https://doi.org/10.1080/01630569508816652.
- R. Glowinski, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981.
- S. Zeng, S. Migórski, Z. Liu, J.-C. Yao, Convergence of a Generalized Penalty Method for Variational–Hemivariational Inequalities, Comm. Nonlinear Sci. Numer. Simul. 92 (2021), 105476. https://doi.org/10.1016/j.cnsns.2020.105476.
- S. Migórski, A. Ochal, M. Sofonea, A Class of Variational-Hemivariational Inequalities in Reflexive Banach Spaces, J. Elasticity 127 (2017), 151–178. https://doi.org/10.1007/s10659-016-9600-7.
- J.K. Kim, Salahuddin, W.H. Lim, General Nonconvex Split Variational Inequality Problems, Korean J. Math. 25 (2017), 469–481. https://doi.org/10.11568/KJM.2017.25.4.469.
- H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, NorthHolland, Amsterdam, 1973.
- D. Cai, M. Sofonea, Y. Xiao, Convergence Results for Elliptic Variational-Hemivariational Inequalities, Adv. Nonlinear Anal. 10 (2020), 2–23. https://doi.org/10.1515/anona-2020-0107.
- F.H. Clarke, Optimization and Nonsmooth Analysis, SIAM, 1990. https://doi.org/10.1137/1.9781611971309.
- J.K. Kim, Salahuddin, Local Sharp Vector Variational Type Inequality and Optimization Problems, Mathematics 8 (2020), 1844. https://doi.org/10.3390/math8101844.
- Z. Denkowski, S. Migórski, N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Springer, Boston, 2003. https://doi.org/10.1007/978-1-4419-9158-4.