On the Analysis of Environmental and Engineering Data Using Alpha Power Transformed Cosine Moment Exponential Model

Main Article Content

Hleil Alrweili

Abstract

This article introduces a new model using the alpha power cosine transformed method for modeling complex data used in hydrology and engineering studies. The alpha power novel distribution transformed the cosine moment exponential model with two parameters. Its probability density function can be skewed and unimodal. Various statistical and mathematical properties are established, and the unknown parameters of the suggested model are determined using numerous estimation procedures. Also, the potential of these estimation techniques is calculated via some simulation studies. In the end, two real data sets are made using the proposed model to make a practical application in environmental and survival fields. The potential and utility of the recommended distribution are verified with other well known models and it shows great superiority in fitting the proposed data sets.

Article Details

References

  1. M. Alizadeh, M.H. Tahir, G.M. Cordeiro, M. Mansoor, M. Zubair, G.G. Hamedani, The Kumaraswamy MarshalOlkin Family of Distributions, J. Egypt. Math. Soc. 23 (2015), 546–557. https://doi.org/10.1016/j.joems.2014.12.002.
  2. E.M. Almetwally, M. Meraou, Application of Environmental Data with New Extension of Nadarajah-Haghighi Distribution, Comput. J. Math. Stat. Sci. 1 (2022), 26–41. https://doi.org/10.21608/cjmss.2022.271186.
  3. E.M. Almetwally, M.A.H. Sabry, R. Alharbi, D. Alnagar, Sh.A.M. Mubarak, E.H. Hafez, Marshall-Olkin Alpha Power Weibull Distribution: Different Methods of Estimation Based on Type-I and Type-II Censoring, Complexity. 2021 (2021), 5533799. https://doi.org/10.1155/2021/5533799.
  4. E. Alshawarbeh, M.Z. Arshad, M.Z. Iqbal, M. Ghamkhar, A. Al Mutairi, M.A. Meraou, E. Hussam, A. Alrashidi, Modeling Medical and Engineering Data Using a New Power Function Distribution: Theory and Inference, J. Rad. Res. Appl. Sci. 17 (2024), 100787. https://doi.org/10.1016/j.jrras.2023.100787.
  5. M.G. Bader, A.M. Priest, Statistical Aspects of Fibre and Bundle Strength in Hybrid Composites, Progr. Sci. Eng. Compos. 2 (1982), 1129–1136.
  6. S.S. BuHamra, N.M. Al-Kandari, E. Hussam, E.M. Almetwally, A.M. Gemeay, A Case Study for Kuwait Mortality During the Consequent Waves of COVID-19, Heliyon. 10 (2024), e26790. https://doi.org/10.1016/j.heliyon.2024.e26790.
  7. G.M. Cordeiro, M. de Castro, A New Family of Generalized Distributions, J. Stat. Comput. Simul. 81 (2011), 883–898. https://doi.org/10.1080/00949650903530745.
  8. A.M. El Gazar, M. Elgarhy, B.S. El-Desouky, Truncated Moment Exponential Distribution with Application, Neuroquantology. 20 (2022), 946–958.
  9. A. Abonongo, J. Abonongo, Exponentiated Generalized Weibull Exponential Distribution: Properties, Estimation and Applications, Comput. J. Math. Stat. Sci. 3 (2024), 57–84. https://doi.org/10.21608/cjmss.2023.243845.1023.
  10. N. Eugene, C. Lee, F. Famoye, Beta-Normal Distribution and Its Applications, Commun. Stat. - Theory Meth. 31 (2002), 497–512. https://doi.org/10.1081/sta-120003130.
  11. F.Y. Eissa, C.D. Sonar, Alpha Power Transformed Extended Power Lindley Distribution, J. Stat. Theory Appl. 22 (2022), 1–18. https://doi.org/10.1007/s44199-022-00051-3.
  12. G.G. Hamedani, M.C. Korkmaz, N.S. Butt, H.M. Yousof, The Type I Quasi Lambert Family, Pak. J. Stat. Oper. Res. 17 (2021), 545–558. https://doi.org/10.18187/pjsor.v17i3.3562.
  13. A.S. Hassan, M. Elgarhy, R.E. Mohamd, S. Alrajhi, On the Alpha Power Transformed Power Lindley Distribution, J. Prob. Stat. 2019 (2019), 8024769. https://doi.org/10.1155/2019/8024769.
  14. A.S. Hassan, R.E. Mohamd, M. Elgarhy, A. Fayomi, Alpha Power Transformed Extended Exponential Distribution: Properties and Applications, J. Nonlinear Sci. Appl. 12 (2018), 239–251. https://doi.org/10.22436/jnsa.012.04.05.
  15. A. Mahdavi, D. Kundu, A New Method for Generating Distributions With an Application to Exponential Distribution, Commun. Stat. - Theory Meth. 46 (2016), 6543–6557. https://doi.org/10.1080/03610926.2015.1130839.
  16. A. Marshall, A New Method for Adding a Parameter to a Family of Distributions With Application to the Exponential and Weibull Families, Biometrika. 84 (1997), 641–652. https://doi.org/10.1093/biomet/84.3.641.
  17. M.A. Meraou, M.Z. Raqab, Statistical Properties and Different Estimation Procedures of Poisson-Lindley Distribution, J. Stat. Theory Appl. 20 (2021), 33–45. https://doi.org/10.2991/jsta.d.210105.001.
  18. Md.M. Rahman, A.M. Gemeay, Md.A. Islam Khan, M.A. Meraou, M.E. Bakr, A.H. Muse, E. Hussam, O.S. Balogun, A New Modified Cubic Transmuted-G Family of Distributions: Properties and Different Methods of Estimation With Applications to Real-Life Data, AIP Adv. 13 (2023), 095025. https://doi.org/10.1063/5.0170178.
  19. E.M. Almetwally, M. Meraou, Application of Environmental Data with New Extension of Nadarajah-Haghighi Distribution, Comput. J. Math. Stat. Sci. 1 (2022), 26–41. https://doi.org/10.21608/cjmss.2022.271186.
  20. E.M. Almetwally, R. Alotaibi, H. Rezk, Estimation and Prediction for Alpha-Power Weibull Distribution Based on Hybrid Censoring, Symmetry. 15 (2023), 1687. https://doi.org/10.3390/sym15091687.
  21. H. Reyad, F. Jamal, G.G. Hamedani, S. Othman, The Alpha Power Transformed Dagum Distribution: Properties and Applications, Eur. J. Stat. 1 (2021), 108–131. https://doi.org/10.28924/ada/stat.1.108.
  22. J. Abonongo, I. Mwaniki, J. Aduda, Cosine Fréchet Loss Distribution: Properties, Actuarial Measures and Insurance Applications, Comput. J. Math. Stat. Sci. 3 (2024), 1–32. https://doi.org/10.21608/cjmss.2023.240185.1019.
  23. G.C. Rodrigues, F. Louzada, P.L. Ramos, Poisson-exponential Distribution: Different Methods of Estimation, J. Appl. Stat. 45 (2016), 128–144. https://doi.org/10.1080/02664763.2016.1268571.
  24. S.T. Dara, M. Ahmad, Recent Advances in Moment Distribution and Their Hazard Rates, Lap Lambert Academic Publishing, 2012.
  25. N. Alsadat, A New Modified Model With Application to Engineering Data Sets, Alexandria Eng. J. 72 (2023), 1–18. https://doi.org/10.1016/j.aej.2023.03.050.
  26. N. Alsadat, A. Ahmad, M. Jallal, A.M. Gemeay, M.A. Meraou, E. Hussam, E. M.Elmetwally, Md.M. Hossain, The Novel Kumaraswamy Power Frechet Distribution With Data Analysis Related to Diverse Scientific Areas, Alexandria Eng. J. 70 (2023), 651–664. https://doi.org/10.1016/j.aej.2023.03.003.
  27. S.A. Alyami, A.S. Hassan, I. Elbatal, M. Elgarhy, A.R. El-Saeed, Bayesian and Non-Bayesian Estimation of Dynamic Cumulative Residual Tsallis Entropy for Moment Exponential Distribution Under Progressive Censored Type II, Open Phys. 21 (2023), 20220264. https://doi.org/10.1515/phys-2022-0264.
  28. M.S. Shama, A.S. Alharthi, F.A. Almulhim, A.M. Gemeay, M.A. Meraou, M.S. Mustafa, E. Hussam, H.M. Aljohani, Modified Generalized Weibull Distribution: Theory and Applications, Sci. Rep. 13 (2023), 12828. https://doi.org/10.1038/s41598-023-38942-9.
  29. S. Shukla, A. Singh Yadav, G.S. Rao, M. Saha, H. Tripathi, Alpha Power Transformed Xgamma Distribution and Applications to Reliability, Survival and Environmental Data, J. Sci. Res. 66 (2022), 330–346. https://doi.org/10.37398/jsr.2022.660338.
  30. S.A. Wani, S. Shafi, Generalized Lindley-Quasi Xgamma Distribution, J. Appl. Math. Stat. Inf. 17 (2021), 5–30. https://doi.org/10.2478/jamsi-2021-0001.
  31. Z. Iqbal, N. Ali, A. Razaq, T. Hussain, M. Salman, On Generalized Moment Exponential Distribution and Power Series Distribution, Asian J. Prob. Stat. 6 (2020), 1–21. https://doi.org/10.9734/ajpas/2020/v6i130150.
  32. Z. Iqbal, M. Wasim, N. Riaz, Exponentiated Moment Exponential Distribution and Power Series Distribution With Applications: A New Compound Family, Int. J. Adv. Res. 5 (2017), 1335–1355. https://doi.org/10.21474/ijar01/4844.