Some Results on the Drazin Inverse of a Modified Matrix with New Conditions
Main Article Content
Abstract
In this article, we consider representations of the Drazin inverse of a modified matrix M = A-CDdB with the generalized Schur complement Z = D - BAdC under different conditions given in recent articles on the subject. Numerical example is given to illustrate our result.
Article Details
References
- A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, second ed., Springer, New York, 2003.
- S.L. Campbell, C.D. Meyer, Generalized Inverse of Linear Transformations, Dover, New York, 1991.
- G. Wang, Y. Wei, S. Qiao, Generalized Inverses: Theory and Computations, Science Press, Beijing/New York, 2004.
- J.M. Shoaf, The Drazin inverse of a rank-one modification of a square matrix, Ph.D. Dissertation, North Carolina State University, 1975.
- R. Kala, K. Klaczy ´nski, Generalized inverses of a sum of matrices, Sankhya Ser. A 56 (1994) 458-464.
- Y. Wei, The Drazin inverse of a modified matrix, Appl. Math. Comput. 125 (2002) 295-301.
- E. Dopazo, M.F. Mart ´inez-Serrano, On deriving the Drazin inverse of a modified matrix, Linear Algebra Appl. 438 (2013) 1678-1687.
- D. Mosi ´c, Some results on the Drazin inverse of a modified matrix, Calcolo. 50 (2013) 305?11.
- A. Shakoor, H. Yang, I. Ali, Some representations for the Drazin inverse of a modified matrix, Calcolo. DOI 10.1007/s10092-013-0098-0 (2013).