An Algorithm for Nonlinear Problems Based on Fixed Point Methodologies With Applications

Main Article Content

Zhenhua Ma, Hamza Bashir, A. A. Alshejari, Junaid Ahmad, Muhammad Arshad


This research presents a highly efficient fixed point algorithm for the computation of fixed points for a very general class of nonexpansive mappings called generalized (α, β)-nonexpansive mappings within the context of uniformly convex Banach space. Our research establishes both weak and strong convergence theorems of the scheme. Furthermore, we demonstrate that the class of generalized (α, β)-nonexpansive mappings contain many classes of nonlinear mappings of the classical literature. Then, we perform various numerical computations to prove the efficiency of the proposed approach. We also study the convergence analysis of the scheme for two dimensional space with taxicab norm. Moreover, we show that our new result gives an alternative approach for solving Caputo fractional differential equation in a novel mappings setting.

Article Details


  1. S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fund. Math. 3 (1922), 133–181.
  2. É. Picard, Memoire sur la Theorie des Equations aux Derivees Partielles et la Methode des Approximations Successives, J. Math. Pures Appl. 6 (1890), 145–210.
  3. M.A. Krasnosel’skii, Two Remarks on the Method of Successive Approximations, Uspekhi Mat. Nauk. 10 (1955), 123–127.
  4. W.R. Mann, Mean Value Methods in Iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.
  5. S. Ishikawa, Fixed Points by a New Iteration Method, Proc. Amer. Math. Soc. 44 (1974), 147–150.
  6. M.A. Noor, New Approximation Schemes for General Variational Inequalities, J. Math. Anal. Appl. 251 (2000), 217–229.
  7. R.P. Agarwal, D. O’Regan, D. Sahu, Iterative Construction of Fixed Points of Nearly Asymptotically Nonexpansive Mappings, J. Nonlinear Convex Anal. 8 (2007), 61–79.
  8. M. Abbas, T. Nazir, A New Faster Iteration Process Applied to Constrained Minimization and Feasibility Problems, Mat. Vesnik. 66 (2014), 223–234.
  9. B.S. Thakur, D. Thakur, M. Postolache, A New Iterative Scheme for Numerical Reckoning Fixed Points of Suzuki’s Generalized Nonexpansive Mappings, Appl. Math. Comp. 275 (2016), 147–155.
  10. N. Hussain, K. Ullah, M. Arshad, Fixed Point Approximation of Suzuki Generalized Nonexpansive Mappings via New Faster Iteration Process, arXiv:1802.09888 [math.FA], (2018).
  11. K. Ullah, J. Ahmad, F.M. Khan, Numerical Reckoning Fixed Points via New Faster Iteration Process, Appl. Gen. Topol. 23 (2022), 213–223.
  12. N. Saleem, M. Rashid, F. Jarad, A. Kalsoom, Convergence of Generalized Quasi-Nonexpansive Mappings in Hyperbolic Space, J. Funct. Spaces. 2022 (2022), 3785584.
  13. M. Abbas, M.W. Asghar, M. De la Sen, Approximation of the Solution of Delay Fractional Differential Equation Using AA-Iterative Scheme, Mathematics. 10 (2022), 273.
  14. J. Ahmad, K. Ullah, M. Arshad, Z. Ma, A New Iterative Method for Suzuki Mappings in Banach Spaces, J. Math. 2021 (2021), 6622931.
  15. K. Ullah, N. Saleem, H. Bilal, J. Ahmad, M. Ibrar, F. Jarad, On the Convergence, Stability and Data Dependence Results of the JK Iteration Process in Banach Spaces, Open Math. 21 (2023), 20230101.
  16. H. Piri, B. Daraby, S. Rahrovi, M. Ghasemi, Approximating Fixed Points of Generalized α-Nonexpansive Mappings in Banach Spaces by New Faster Iteration Process, Numer. Algor. 81 (2018), 1129–1148.
  17. W.A. Kirk, A Fixed Point Theorem for Mappings which do not Increase Distances, Amer. Math. Mon. 72 (1965), 1004–1006.
  18. D. Göhde, Zum Prinzip der Kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258.
  19. F.E. Browder, Nonexpansive Nonlinear Operators in a Banach Space, Proc. Natl. Acad. Sci. U.S.A. 54 (1965), 1041–1044.
  20. K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.
  21. K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Dekker, New York, 1984.
  22. Z. Opial, Weak Convergence of the Sequence of Successive Approximations for Nonexpansive Mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
  23. J. Schu, Weak and Strong Convergence to Fixed Points of Asymptotically Nonexpansive Mappings, Bull. Aust. Math. Soc. 43 (1991), 153–159.
  24. D.R. Sahu, D. O’Regan, R.P. Agarwal, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, New York, 2009.
  25. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, (2000).
  26. T. Suzuki, Fixed Point Theorems and Convergence Theorems for Some Generalized Nonexpansive Mappings, J. Math. Anal. Appl. 340 (2008), 1088–1095.
  27. K. Aoyama, F. Kohsaka, Fixed Point Theorem for α-Nonexpansive Mappings in Banach Spaces, Nonlinear Anal.: Theory Meth. Appl. 74 (2011), 4387–4391.
  28. D. Ariza-Ruiz, C.H. Linares, E. Llorens-Fuster, E. Moreno-Gálvez, On α-Nonexpansive Mappings in Banach Spaces, Carpathian J. Math. 32 (2016), 13–28.
  29. R. Pant, R. Shukla, Approximating Fixed Points of Generalized α-Nonexpansive Mappings in Banach Spaces, Numer. Funct. Anal. Optim. 38 (2017), 248–266.
  30. R. Pant, R. Pandey, Existence and Convergence Results for a Class of Nonexpansive Type Mappings in Hyperbolic Spaces, Appl. Gen. Topol. 20 (2019), 281–295.
  31. K. Ullah, J. Ahmad, M. de la Sen, On Generalized Nonexpansive Maps in Banach Spaces, Computation. 8 (2020), 61.
  32. F. Ahmad, K. Ullah, J. Ahmad, H. Bilal, On an Efficient Iterative Scheme for a Class of Generalized Nonexpansive Operators in Banach Spaces, Asian-Eur. J. Math. 16 (2023), 2350172.
  33. J. Ahmad, M. Arshad, K. Ullah, Z. Ma, Numerical Solution of Bratu’s Boundary Value Problem Based on Green’s Function and a Novel Iterative Scheme, Bound. Value Probl. 2023 (2023), 102.
  34. J. Ahmad, M. Arshad, R. George, A Fixed Point Iterative Scheme Based on Green’s Function for Numerical Solutions of Singular BVPs, AIMS Math. 8 (2023), 29517–29534.
  35. J. Ahmad, K. Ullah, R. George, Numerical Algorithms for Solutions of Nonlinear Problems in Some Distance Spaces, AIMS Math. 8 (2023), 8460–8477.
  36. B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, San Francisco, 1982.
  37. J.P. Richard, Time-Delay Systems: An Overview of Some Recent Advances and Open Problems, Automatica. 39 (2003), 1667–1694.