Impact of Infection on Honeybee Population Dynamics in a Seasonal Environment

Main Article Content

Miled El Hajji, Fahad Ahmed Saad Alzahrani, Ridha Mdimagh

Abstract

We studied a non-autonomous model for the spread of disease within a bee colony under the influence of seasonality where we consider time-dependent parameters to integrate the impact of the periodicity of weather on the Honeybee population dynamics. We proved that the system admits a unique bounded positive solution, and also a global attractor set. The basic reproduction number, R0, was defined as the spectral radius of a linear integral operator. We proved that the global dynamics is determined by this threshold parameter: If R0≤1, then the disease-free periodic solution is globally asymptotically stable, while if R0>1, then the disease persists. We confirmed the theoretical results trough an extensive numerical simulations.

Article Details

References

  1. F. Brauer, C. Castillo-Chavez, A. Mubayi, et al. Some Models for Epidemics of Vector-Transmitted Diseases, Infect. Dis. Model. 1 (2016), 79–87. https://doi.org/10.1016/j.idm.2016.08.001.
  2. S.K. Sasmal, I. Ghosh, A. Huppert, et al. Modeling the Spread of Zika Virus in a Stage-Structured Population: Effect of Sexual Transmission, Bull. Math. Biol. 80 (2018), 3038–3067. https://doi.org/10.1007/s11538-018-0510-7.
  3. M.A. Ibrahim, A. Dénes, Threshold Dynamics in a Model for Zika Virus Disease With Seasonality, Bull. Math. Biol. 83 (2021), 27. https://doi.org/10.1007/s11538-020-00844-6.
  4. D. Xiao, Dynamics and Bifurcations on a Class of Population Model With Seasonal Constant-Yield Harvesting, Discr. Contin. Dyn. Syst. - B. 21 (2015), 699–719. https://doi.org/10.3934/dcdsb.2016.21.699.
  5. M. El Hajji, D.M. Alshaikh, N.A. Almuallem, Periodic Behaviour of an Epidemic in a Seasonal Environment With Vaccination, Mathematics. 11 (2023), 2350. https://doi.org/10.3390/math11102350.
  6. M. El Hajji, R.M. Alnjrani, Periodic Trajectories for HIV Dynamics in a Seasonal Environment With a General Incidence Rate, Int. J. Anal. Appl. 21 (2023), 96. https://doi.org/10.28924/2291-8639-21-2023-96.
  7. M. El Hajji, N.S. Alharbi, M.H. Alharbi, Mathematical Modeling for a CHIKV Transmission Under the Influence of Periodic Environment, Int. J. Anal. Appl. 22 (2024), 6. https://doi.org/10.28924/2291-8639-22-2024-6.
  8. B.S. Alshammari, D.S. Mashat, F.O. Mallawi, Mathematical and Numerical Investigations for a Cholera Dynamics With a Seasonal Environment, Int. J. Anal. Appl. 21 (2023), 127. https://doi.org/10.28924/2291-8639-21-2023-127.
  9. A.A. Alsolami, M. El Hajji, Mathematical Analysis of a Bacterial Competition in a Continuous Reactor in the Presence of a Virus, Mathematics. 11 (2023), 883. https://doi.org/10.3390/math11040883.
  10. A.H. Albargi, M. El Hajji, Bacterial Competition in the Presence of a Virus in a Chemostat, Mathematics. 11 (2023), 3530. https://doi.org/10.3390/math11163530.
  11. M. El Hajji, Periodic Solutions for Chikungunya Virus Dynamics in a Seasonal Environment With a General Incidence Rate, AIMS Math. 8 (2023), 24888–24913. https://doi.org/10.3934/math.20231269.
  12. M. El Hajji, R.M. Alnjrani, Periodic Behaviour of HIV Dynamics With Three Infection Routes, Mathematics. 12 (2024), 123. https://doi.org/10.3390/math12010123.
  13. M. El Hajji, Influence of the Presence of a Pathogen and Leachate Recirculation on a Bacterial Competition, Int. J. Biomath. In Press. https://doi.org/10.1142/S1793524524500293.
  14. J. Ma, Z. Ma, Epidemic Threshold Conditions for Seasonally Forced SEIR Models, Math. Biosci. Eng. 3 (2006), 161–172. https://doi.org/10.3934/mbe.2006.3.161.
  15. T. Zhang, Z. Teng, On a Nonautonomous SEIRS Model in Epidemiology, Bull. Math. Biol. 69 (2007), 2537–2559. https://doi.org/10.1007/s11538-007-9231-z.
  16. N. Bacaër, S. Guernaoui, THe Epidemic Threshold of Vector-Borne Diseases With Seasonality, J. Math. Biol. 53 (2006), 421–436. https://doi.org/10.1007/s00285-006-0015-0.
  17. S. Guerrero-Flores, O. Osuna, C.V. de Leon, Periodic Solutions for Seasonal SIQRS Models With Nonlinear Infection Terms, Elec. J. Diff. Equ. 2019 (2019), 92.
  18. Y. Nakata, T. Kuniya, Global Dynamics of a Class of Seirs Epidemic Models in a Periodic Environment, J. Math. Anal. Appl. 363 (2010), 230–237. https://doi.org/10.1016/j.jmaa.2009.08.027.
  19. W. Wang, X.Q. Zhao, Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments, J. Dyn. Diff. Equ. 20 (2008), 699–717. https://doi.org/10.1007/s10884-008-9111-8.
  20. M.I. Betti, L.M. Wahl, M. Zamir, Effects of Infection on Honey Bee Population Dynamics: A Model, PLoS ONE. 9 (2014), e110237. https://doi.org/10.1371/journal.pone.0110237.
  21. F. Zhang, X.Q. Zhao, A Periodic Epidemic Model in a Patchy Environment, J. Math. Anal. Appl. 325 (2007), 496–516. https://doi.org/10.1016/j.jmaa.2006.01.085.
  22. X.Q. Zhao, Dynamical Systems in Population Biology, Springer, 2017. https://doi.org/10.1007/978-3-319-56433-3.
  23. O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the Definition and the Computation of the Basic Reproduction Ratio R 0 in Models for Infectious Diseases in Heterogeneous Populations, J. Math. Biol. 28 (1990), 365–382. https://doi.org/10.1007/bf00178324.
  24. P. van den Driessche, J. Watmough, Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission, Math. Biosci. 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6.
  25. A.H. Albargi, M.E. Hajji, Mathematical Analysis of a Two-Tiered Microbial Food-Web Model for the Anaerobic Digestion Process, Math. Biosci. Eng. 20 (2023), 6591–6611. https://doi.org/10.3934/mbe.2023283.
  26. A. Alshehri, M. El Hajji, Mathematical Study for Zika Virus Transmission With General Incidence Rate, AIMS Math. 7 (2022), 7117–7142. https://doi.org/10.3934/math.2022397.
  27. M. El Hajji, Mathematical Modeling for Anaerobic Digestion Under the Influence of Leachate Recirculation, AIMS Math. 8 (2023), 30287–30312. https://doi.org/10.3934/math.20231547.
  28. M. El Hajji, A. Zaghdani, S. Sayari, Mathematical analysis and optimal control for Chikungunya virus with two routes of infection with nonlinear incidence rate, Int. J. Biomath. 15 (2022), 2150088. https://doi.org/10.1142/s1793524521500881.
  29. M. El Hajji, Periodic Solutions for an "SVIQR" Epidemic Model in a Seasonal Environment With General Incidence Rate, Int. J. Biomath. In Press. https://doi.org/10.1142/S1793524524500335.
  30. M. El Hajji, A.Y. Al-Subhi, M.H. Alharbi, Mathematical Investigation for Two-Bacteria Competition in Presence of a Pathogen With Leachate Recirculation, Int. J. Anal. Appl. 22 (2024), 45. https://doi.org/10.28924/2291-8639-22-2024-45.