An Augmented Mixed DG Scheme for the Electric Field
Main Article Content
Abstract
In this paper, a new augmented mixed DG formulation for the numerical approximation of the electrostatic field was introduced and studied. Its error analysis was carried out and an optimal error estimates as a function of the mesh size was obtained. Some numerical tests confirming the theoretical convergence were given.
Article Details
References
- D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems, SIAM J. Numer. Anal. 39 (2002), 1749–1779. https://doi.org/10.1137/s0036142901384162.
- P. Castillo, B. Cockburn, I. Perugia, D. Schötzau, An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems, SIAM J. Numer. Anal. 38 (2000), 1676–1706. https://doi.org/10.1137/s0036142900371003.
- B. Cockburn, G. Kanschat, I. Perugia, D. Schötzau, Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids, SIAM J. Numer. Anal. 39 (2001), 264–285. https://doi.org/10.1137/s0036142900371544.
- D. Christian, Construction of an Interpolant Operator: Application to the Three-Dimensional Electrostatic Problem, Appl. Math. Lett. 22 (2009), 1685–1689. https://doi.org/10.1016/j.aml.2009.06.002.
- D. Christian, A. Zaghdani, Mixed Discontinuous Galerkin Method for the Three Dimensional Electrostatic Problem, Int. J. Pure Appl. Math. 69 (2011), 357–387. https://hal.science/hal-03690113.
- C. Daveau, A. Zaghdani, A hp-Discontinuous Galerkin Method for the Time-Dependent Maxwell’s Equation: A Priori Error Estimate, J. Appl. Math. Comput. 30 (2008), 1–8. https://doi.org/10.1007/s12190-008-0153-1.
- V. Girault, M.F. Wheeler, Discontinuous Galerkin Methods, in: R. Glowinski, P. Neittaanmäki (Eds.), Partial Differential Equations, Springer Netherlands, Dordrecht, 2008: pp. 3–26. https://doi.org/10.1007/978-1-4020-8758-5_1.
- P. Houston, C. Schwab, E. Süli, Discontinuoushp-Finite Element Methods for Advection-Diffusion-Reaction Problems, SIAM J. Numer. Anal. 39 (2002), 2133–2163. https://doi.org/10.1137/s0036142900374111.
- P. Houston, I. Perugia, D. Schötzau, hp-DGFEM for Maxwell’s Equations, in: F. Brezzi, A. Buffa, S. Corsaro, A. Murli (Eds.), Numerical Mathematics and Advanced Applications, Springer Milan, Milano, 2003: pp. 785–794. https://doi.org/10.1007/978-88-470-2089-4_71.
- I. Perugia, D. Schotzau, The hp-Local Discontinuous Galerkin Method for the Low-Frequency Time-Harmonic Maxwell’s Equations, Math. Comp, 72 (2003), 1179–1214.
- S. Sayari, A. Zaghdani, M. El Hajji, Analysis of HDG Method for the Reaction-Diffusion Equations, Appl. Numer. Math. 156 (2020), 396–409. https://doi.org/10.1016/j.apnum.2020.05.012.
- A. Zaghdani, S. Sayari, M.E. Hajji, A New Hybridized Mixed Weak Galerkin Method for Second-Order Elliptic Problems, J. Comp. Math. 40 (2022), 499–516. https://doi.org/10.4208/jcm.2011-m2019-0142.
- A. Zaghdani, Formulations Discontinues de Galerkin Pour les Equations de Maxwell, These des Universités, Université de Paris Sud, (2006). https://theses.hal.science/tel-00151255.
- A. Zaghdani, C. Daveau, Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell’s equations, C. R. Acad. Sci. Paris, Ser. I. 342 (2006), 29–32. https://doi.org/10.1016/j.crma.2005.10.026.
- A. Zaghdani, C. Daveau, On the Coupling of LDG-FEM and BEM Methods for the Three Dimensional Magnetostatic Problem, Appl. Math. Comp. 217 (2010), 1791–1810. https://doi.org/10.1016/j.amc.2010.07.001.
- A. Zaghdani, M. Ezzat, A New Mixed Discontinuous Galerkin Method for the Electrostatic Field, Adv. Differ. Equ. 2019 (2019), 487. https://doi.org/10.1186/s13662-019-2420-x.
- A. Zaghdani, M. Ezzat Mohamed, A.I. El-Maghrabi, A Discontinuous Galerkin Method for the Wave Equation, J. Appl. Sci. 17 (2017), 81–89.
- A. Zaghdani, A. Hasnaoui, S. Sayari, Analysis of a Weak Galerkin Mixed Formulation for Maxwell’s Equations, Kragujevac J. Math. 50 (2026), 387–401.