An Augmented Mixed DG Scheme for the Electric Field

Main Article Content

Abdelhamid Zaghdani


In this paper, a new augmented mixed DG formulation for the numerical approximation of the electrostatic field was introduced and studied. Its error analysis was carried out and an optimal error estimates as a function of the mesh size was obtained. Some numerical tests confirming the theoretical convergence were given.

Article Details


  1. D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems, SIAM J. Numer. Anal. 39 (2002), 1749–1779.
  2. P. Castillo, B. Cockburn, I. Perugia, D. Schötzau, An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems, SIAM J. Numer. Anal. 38 (2000), 1676–1706.
  3. B. Cockburn, G. Kanschat, I. Perugia, D. Schötzau, Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids, SIAM J. Numer. Anal. 39 (2001), 264–285.
  4. D. Christian, Construction of an Interpolant Operator: Application to the Three-Dimensional Electrostatic Problem, Appl. Math. Lett. 22 (2009), 1685–1689.
  5. D. Christian, A. Zaghdani, Mixed Discontinuous Galerkin Method for the Three Dimensional Electrostatic Problem, Int. J. Pure Appl. Math. 69 (2011), 357–387.
  6. C. Daveau, A. Zaghdani, A hp-Discontinuous Galerkin Method for the Time-Dependent Maxwell’s Equation: A Priori Error Estimate, J. Appl. Math. Comput. 30 (2008), 1–8.
  7. V. Girault, M.F. Wheeler, Discontinuous Galerkin Methods, in: R. Glowinski, P. Neittaanmäki (Eds.), Partial Differential Equations, Springer Netherlands, Dordrecht, 2008: pp. 3–26.
  8. P. Houston, C. Schwab, E. Süli, Discontinuoushp-Finite Element Methods for Advection-Diffusion-Reaction Problems, SIAM J. Numer. Anal. 39 (2002), 2133–2163.
  9. P. Houston, I. Perugia, D. Schötzau, hp-DGFEM for Maxwell’s Equations, in: F. Brezzi, A. Buffa, S. Corsaro, A. Murli (Eds.), Numerical Mathematics and Advanced Applications, Springer Milan, Milano, 2003: pp. 785–794.
  10. I. Perugia, D. Schotzau, The hp-Local Discontinuous Galerkin Method for the Low-Frequency Time-Harmonic Maxwell’s Equations, Math. Comp, 72 (2003), 1179–1214.
  11. S. Sayari, A. Zaghdani, M. El Hajji, Analysis of HDG Method for the Reaction-Diffusion Equations, Appl. Numer. Math. 156 (2020), 396–409.
  12. A. Zaghdani, S. Sayari, M.E. Hajji, A New Hybridized Mixed Weak Galerkin Method for Second-Order Elliptic Problems, J. Comp. Math. 40 (2022), 499–516.
  13. A. Zaghdani, Formulations Discontinues de Galerkin Pour les Equations de Maxwell, These des Universités, Université de Paris Sud, (2006).
  14. A. Zaghdani, C. Daveau, Two new discrete inequalities of Poincaré–Friedrichs on discontinuous spaces for Maxwell’s equations, C. R. Acad. Sci. Paris, Ser. I. 342 (2006), 29–32.
  15. A. Zaghdani, C. Daveau, On the Coupling of LDG-FEM and BEM Methods for the Three Dimensional Magnetostatic Problem, Appl. Math. Comp. 217 (2010), 1791–1810.
  16. A. Zaghdani, M. Ezzat, A New Mixed Discontinuous Galerkin Method for the Electrostatic Field, Adv. Differ. Equ. 2019 (2019), 487.
  17. A. Zaghdani, M. Ezzat Mohamed, A.I. El-Maghrabi, A Discontinuous Galerkin Method for the Wave Equation, J. Appl. Sci. 17 (2017), 81–89.
  18. A. Zaghdani, A. Hasnaoui, S. Sayari, Analysis of a Weak Galerkin Mixed Formulation for Maxwell’s Equations, Kragujevac J. Math. 50 (2026), 387–401.