Uncertainty Principle for the Weinstein-Gabor Transforms

Main Article Content

I. Kallel, A. Saoudi


In this paper, we present the localization of the ν-entropy for the Weinstein Gabor transform. Through the utilization of the ν-entropy, we establish an alternative expression for the Heisenberg uncertainty principle for the Weinstein Gabor transform. In addition, we further extend our study by elaborating on an Lp version of the Heisenberg uncertainty principle for the Weinstein Gabor transform.

Article Details


  1. H. Mejjaoli, A.O.A. Salem, Weinstein Gabor Transform and Applications, Adv. Pure Math. 02 (2012), 203–210. https://doi.org/10.4236/apm.2012.23029.
  2. H.B. Mohamed, A. Saoudi, Linear Canonical Fourier–bessel Wavelet Transform: Properties and Inequalities, Integral Transforms Spec. Funct. 35 (2024), 270–290. https://doi.org/10.1080/10652469.2024.2317724.
  3. Z.B. Nahia, Fonctions Harmoniques et Proprietés de la Moyenne Associéesa l’Opérateur de Weinstein, Thesis, Department of Mathematics Faculty of Sciences of Tunis, Tunisia, (1995).
  4. N.B. Salem, Inequalities Related to Spherical Harmonics Associated With the Weinstein Operator, Integral Transforms Spec. Funct. 34 (2022), 41–64. https://doi.org/10.1080/10652469.2022.2087063.
  5. N.B. Salem, A.R. Nasr, Heisenberg-Type Inequalities for the Weinstein Operator, Integral Transforms Spec. Funct. 26 (2015), 700–718. https://doi.org/10.1080/10652469.2015.1038531.
  6. A. Saoudi, On the Weinstein-wigner Transform and Weinstein-weyl Transform, J. Pseudo-Differ. Oper. Appl. 11 (2019), 1–14. https://doi.org/10.1007/s11868-019-00313-2.
  7. A. Saoudi, A Variation of L p Uncertainty Principles in Weinstein Setting, Indian J. Pure Appl. Math. 51 (2020), 1697–1712. https://doi.org/10.1007/s13226-020-0490-9.
  8. A. Saoudi, Calderón’s Reproducing Formulas for the Weinstein L 2 -Multiplier Operators, Asian-European J. Math. 14 (2019), 2150003. https://doi.org/10.1142/s1793557121500030.
  9. A. Saoudi, Two-Wavelet Theory in Weinstein Setting, Int. J. Wavelets Multiresolut Inf. Process. 20 (2022), 2250020. https://doi.org/10.1142/s0219691322500205.
  10. A. Saoudi, Time-Scale Localization Operators in the Weinstein Setting, Results Math. 78 (2022), 14. https://doi.org/10.1007/s00025-022-01792-4.
  11. A. Saoudi, Hardy Type Theorems for Linear Canonical Dunkl Transform, Complex Anal. Oper. Theory, 18 (2024), 57. https://doi.org/10.1007/s11785-023-01478-x.
  12. A. Saoudi, I. Kallel, A Variation of L p Local Uncertainty Principles for Weinstein, Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 25 (2024), 3–10. https://doi.org/10.59277/pra-ser.a.25.1.01.
  13. A. Saoudi, I.A. Kallel, L 2 -Uncertainty Principle for the Weinstein-Multiplier Operators, Int. J. Anal. Appl, 17 (2019), 64–75. https://doi.org/10.28924/2291-8639-17-2019-64.
  14. A. Saoudi, B. Nefzi, Boundedness and Compactness of Localization Operators for Weinstein-wigner Transform, J. Pseudo-Differ. Oper. Appl. 11 (2020), 675–702. https://doi.org/10.1007/s11868-020-00328-0.
  15. F.A. Shah, K.S. Nisar, W.Z. Lone, A.Y. Tantary, Uncertainty Principles for the Quadratic-phase Fourier Transforms, Math. Meth. Appl. Sci. 44 (2021), 10416–10431. https://doi.org/10.1002/mma.7417.
  16. D. Slepian, Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - IV: Extensions to Many Dimensions; Generalized Prolate Spheroidal Functions, Bell Syst. Techn. J. 43 (1964), 3009–3057. https://doi.org/10.1002/j.1538-7305.1964.tb01037.x.
  17. S.K. Upadhyay, M. Sartaj, An Integral Representation of Pseudo-Differential Operators Involving Weinstein Transform, J. Pseudo-Differ. Oper. Appl. 13 (2022), 11. https://doi.org/10.1007/s11868-022-00442-1.
  18. Z. Zhang, Uncertainty Principle for Free Metaplectic Transformation, J. Fourier Anal. Appl. 29 (2023), 71. https://doi.org/10.1007/s00041-023-10052-0.