Periodically and Stability Properties of a Higher Order Rational Difference Equation

Main Article Content

B. S. Alofi

Abstract

The aim of this research is to study the local, global, and boundedness of the difference equation
Tη+1 = r + p1Tη−l1 / Tη−m1 + p2Tη−l1 / Tη−m2 + ... + psTη−l1 / Tη−ms,
where l1, m1, m2, ..., ms, s, are positive real numbers. It also studies periodic solutions of special case of this equation. Finally, numerical examples are given to confirm results.

Article Details

References

  1. H.S. Alayachi, M.S.M. Noorani, A.Q. Khan, M.B. Almatrafi, Analytic Solutions and Stability of Sixth Order Difference Equations, Math. Probl. Eng. 2020 (2020), 1230979. https://doi.org/10.1155/2020/1230979.
  2. A.M. Amleh, V. Kirk, G. Ladas, On the Dynamics of xη+1 = a + bxη−1 / A + Bxη−2, Math. Sci. Res. Hot-Line, 5 (2001), 1–15.
  3. E. Camouzis, G. Ladas, H.D. Voulov, On the Dynamics of xη+1 = α + γxη−1 + δxη−2 / A + xη−2, J. Diff. Equ. Appl. 9 (2003), 731–738. https://doi.org/10.1080/1023619021000042153.
  4. E. Chatterjee, E. A. Grove, Y. Kostrov and G. Ladas, On the Trichotomy Character of xη+1 = α + γxη−1 / A + Bxη + xη−2, J. Diff. Equ. Appl. 9 (2003), 1113–1128. https://doi.org/10.1080/1023619031000146850.
  5. G.E. Chatzarakis, E.M. Elabbasy, O. Moaaz, H. Mahjoub, Global Analysis and the Periodic Character of a Class of Difference Equations, Axioms 8 (2019), 131. https://doi.org/10.3390/axioms8040131.
  6. C. Cinar, On the Positive Solutions of the Difference Equation xη+1 = axη−1 / 1 + bxηxη−1, Appl. Math. Comp. 156 (2004), 587–590. https://doi.org/10.1016/j.amc.2003.08.010.
  7. D.S. Dilip, S.M. Mathew, E.M. Elsayed, Asymptotic and Boundedness Behaviour of a Second Order Difference Equation, J. Comp. Math. 4 (2020), 68–77. http://doi.org/10.26524/cm82.
  8. E.M. Elabbasy, H. El-Metwally, E.M. Elsayed, Global Attractivity and Periodic Character of a Fractional Difference Equation of Order Three, Yokohama Math. J. 53 (2007), 89–100.
  9. E.M. Elabbasy, H. El-Metwally, E.M. Elsayed, On the Difference Equation xη+1 = axη – bxη / cxη − dxη−1, Adv. Diff. Equ. 2006 (2006), 82579. https://doi.org/10.1155/ade/2006/82579.
  10. E.M. Elabbasy, H. El-Metwally, E.M. Elsayed, On the Difference Equations xη+1 = αxη−k / β + γΠk i=0 xη−i, J. Concr. Appl. Math. 5 (2007), 101–113.
  11. E.M. Elabbasy, H. El-Metwally, E.M. Elsayed, On the Difference equation xn + 1 = axn – bxn / (cxn − dxn−1), Adv. Diff. Equ. 2006 (2006), 82579. https://doi.org/10.1155/ade/2006/82579.
  12. H. El-Metwally, E.A. Grove, G. Ladas, A Global Convergence Result with Applications to Periodic Solutions, J. Math. Anal. Appl. 245 (2000), 161–170. https://doi.org/10.1006/jmaa.2000.6747.
  13. H. El-Metwally, E.A. Grove, G. Ladas, L.C. McGrath, On the Difference Equation yη+1 = yη−(2k+1) + p / yη−(2k+1) + qyη−2l, in: Proceedings of the 6th ICDE, Taylor and Francis, London, 2004.
  14. H. El-Metwallya, E.A. Grove, G. Ladas, H.D. Voulov, On the Global Attractivity and the Periodic Character of Some Difference Equations, J. Diff. Equ. Appl. 7 (2001), 837–850. https://doi.org/10.1080/10236190108808306.
  15. E.M. Elsayed, New Method to Obtain Periodic Solutions of Period Two and Three of a Rational Difference Equation, Nonlinear Dyn. 79 (2014), 241–250. https://doi.org/10.1007/s11071-014-1660-2.
  16. E.M. Elsayed, F. Alzahrani, I. Abbas, N.H. Alotaibi, Dynamical Behavior and Solution of Nonlinear Difference Equation via Fibonacci Sequence, J. Appl. Anal. Comp. 10 (2020), 282–296. https://doi.org/10.11948/20190143.
  17. E.M. Elsayed, B.S. Alofi, A.Q. Khan, Qualitative Behavior of Solutions of Tenth-Order Recursive Sequence Equation, Math. Probl. Eng. 2022 (2022), 5242325. https://doi.org/10.1155/2022/5242325.
  18. E.M. Elsayed, B.S. Aloufi, O. Moaaz, The Behavior and Structures of Solution of Fifth-Order Rational Recursive Sequence, Symmetry 14 (2022), 641. https://doi.org/10.3390/sym14040641.
  19. A. Khaliq, S.S. Hassan, M. Saqib, D.S. Mashat, Behavior of a Seventh Order Rational Difference Equation, Dyn. Syst. Appl. 28 (2019), 809–825.
  20. A.Q. Khan, H. El-Metwally, Global Dynamics, Boundedness, and Semicycle Analysis of a Difference Equation, Discr. Dyn. Nat. Soc. 2021 (2021), 1896838. https://doi.org/10.1155/2021/1896838.
  21. V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
  22. M.R.S. Kulenovic, G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman & Hall / CRC Press, 2001.
  23. X. Yan, W. Li, Global Attractivity for a Class of Nonlinear Difference Equations, Soochow J. Math. 29 (2003), 327–338.
  24. X. Yang, W. Su, B. Chen, G.M. Megson, D.J. Evans, On the Recursive Sequence xη+1 = axη−1 + bxη−2 / c + dxη−1xη−2, Appl. Math. Comp. 162 (2005), 1485–1497. https://doi.org/10.1016/j.amc.2004.03.023.