Mathematical Analysis for the Influence of Seasonality on Chikungunya Virus Dynamics
Main Article Content
Abstract
In this article, we discuss a mathematical system modelling Chikungunya virus dynamics in a seasonal environment with general incidence rates. We establish the existence, uniqueness, positivity and boundedness of a periodic orbit. We show that the global dynamics is determined using the basic reproduction number denoted by R0 and calculated using the spectral radius of a linear integral operator. We show the global stability of the disease free periodic solution if R0<1 and we show also the persistence of the disease if R0>1 where the trajectories converge to a periodic orbit. Finally, we display some numerical examples confirming the theoretical findings.
Article Details
References
- M. El Hajji, Modelling and Optimal Control for Chikungunya Disease, Theory Biosci. 140 (2020), 27–44. https://doi.org/10.1007/s12064-020-00324-4.
- M. El Hajji, A. Zaghdani, S. Sayari, Mathematical Analysis and Optimal Control for Chikungunya Virus With Two Routes of Infection With Nonlinear Incidence Rate, Int. J. Biomath. 15 (2021), 2150088. https://doi.org/10.1142/s1793524521500881.
- S. Alsahafi, S. Woodcock, Mathematical Study for Chikungunya Virus with Nonlinear General Incidence Rate, Mathematics. 9 (2021) 2186. https://doi.org/10.3390/math9182186.
- A.M. Elaiw, T.O. Alade, S.M. Alsulami, Analysis of Latent CHIKV Dynamics Models With General Incidence Rate and Time Delays, J. Biol. Dyn. 12 (2018), 700–730. https://doi.org/10.1080/17513758.2018.1503349.
- A.M. Elaiw, T.O. Alade, S.M. Alsulami, Analysis of Within-Host CHIKV Dynamics Models With General Incidence Rate, Int. J. Biomath. 11 (2018), 1850062. https://doi.org/10.1142/s1793524518500626.
- A.M. Elaiwa, S.E. Almalkia, A. Hobiny, Global Dynamics of Chikungunya Virus With Two Routes of Infection, J. Comput. Anal. Appl. 28 (2020), 481–490.
- A.M. Elaiw, S.E. Almalki, A.D. Hobiny, Global Dynamics of Humoral Immunity Chikungunya Virus With Two Routes of Infection and Holling Type-II, J. Math. Computer Sci. 19 (2019), 65–73. https://doi.org/10.22436/jmcs.019.02.01.
- A.M. Elaiw, S.E. Almalki, A.D. Hobiny, Stability of CHIKV Infection Models With CHIKV-monocyte and InfectedMonocyte Saturated Incidences, AIP Adv. 9 (2019), 025308. https://doi.org/10.1063/1.5085804.
- N. Bacaër, M.G.M. Gomes, On the Final Size of Epidemics with Seasonality, Bull. Math. Biol. 71 (2009), 1954–1966. https://doi.org/10.1007/s11538-009-9433-7.
- J. Ma, Z. Ma, Epidemic Threshold Conditions for Seasonally Forced SEIR Models, Math. Biosci. Eng. 3 (2006), 161–172. https://doi.org/10.3934/mbe.2006.3.161.
- S. Guerrero-Flores, O. Osuna, C.V. de Leon, Periodic Solutions for Seasonal Siqrs Models With Nonlinear Infection Terms, Elec. J. Diff. Equ. 2019 (2019), 92.
- M. El Hajji, F.A.S. Alzahrani, R. Mdimagh, Impact of Infection on Honeybee Population Dynamics in a Seasonal Environment, Int. J. Anal. Appl. 22 (2024), 75. https://doi.org/10.28924/2291-8639-22-2024-75.
- T. Zhang, Z. Teng, On a Nonautonomous SEIRS Model in Epidemiology, Bull. Math. Biol. 69 (2007), 2537–2559. https://doi.org/10.1007/s11538-007-9231-z.
- Y. Nakata, T. Kuniya, Global Dynamics of a Class of SEIRS Epidemic Models in a Periodic Environment, J. Math. Anal. Appl. 363 (2010), 230–237. https://doi.org/10.1016/j.jmaa.2009.08.027.
- N. Bacaër, S. Guernaoui, The Epidemic Threshold of Vector-Borne Diseases With Seasonality, J. Math. Biol. 53 (2006), 421–436. https://doi.org/10.1007/s00285-006-0015-0.
- W. Wang, X.Q. Zhao, Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments, J. Dyn. Diff. Equ. 20 (2008), 699–717. https://doi.org/10.1007/s10884-008-9111-8.
- M. El Hajji, D.M. Alshaikh, N.A. Almuallem, Periodic Behaviour of an Epidemic in a Seasonal Environment with Vaccination, Mathematics. 11 (2023), 2350. https://doi.org/10.3390/math11102350.
- M. El Hajji, R.M. Alnjrani, Periodic Trajectories for HIV Dynamics in a Seasonal Environment With a General Incidence Rate, Int. J. Anal. Appl. 21 (2023), 96. https://doi.org/10.28924/2291-8639-21-2023-96.
- M. El Hajji, N.S. Alharbi, M.H. Alharbi, Mathematical Modeling for a CHIKV Transmission Under the Influence of Periodic Environment, Int. J. Anal. Appl. 22 (2024), 6. https://doi.org/10.28924/2291-8639-22-2024-6.
- B.S. Alshammari, D.S. Mashat, F.O. Mallawi, Mathematical and Numerical Investigations for a Cholera Dynamics With a Seasonal Environment, Int. J. Anal. Appl. 21 (2023), 127. https://doi.org/10.28924/2291-8639-21-2023-127.
- F.A. Al Najim, Mathematical Analysis for a Zika Virus Dynamics in a Seasonal Environment, Int. J. Anal. Appl. 22 (2024), 71. https://doi.org/10.28924/2291-8639-22-2024-71.
- A.A. Alsolami, M. El Hajji, Mathematical Analysis of a Bacterial Competition in a Continuous Reactor in the Presence of a Virus, Mathematics. 11 (2023), 883. https://doi.org/10.3390/math11040883.
- A.H. Albargi, M. El Hajji, Bacterial Competition in the Presence of a Virus in a Chemostat, Mathematics. 11 (2023), 3530. https://doi.org/10.3390/math11163530.
- M. El Hajji, Periodic Solutions for Chikungunya Virus Dynamics in a Seasonal Environment With a General Incidence Rate, AIMS Math. 8 (2023), 24888–24913. https://doi.org/10.3934/math.20231269.
- M. El Hajji, R.M. Alnjrani, Periodic Behaviour of HIV Dynamics with Three Infection Routes, Mathematics. 12 (2023), 123. https://doi.org/10.3390/math12010123.
- M. El Hajji, Periodic Solutions for an “SVIQR" Epidemic Model in a Seasonal Environment With General Incidence Rate, Int. J. Biomath. In Press. https://doi.org/10.1142/s1793524524500335.
- F. Zhang, X.Q. Zhao, A Periodic Epidemic Model in a Patchy Environment, J. Math. Anal. Appl. 325 (2007), 496–516. https://doi.org/10.1016/j.jmaa.2006.01.085.
- X.Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003. https://doi.org/10.1007/978-0-387-21761-1.
- O. Diekmann, J. Heesterbeek, On the Definition and the Computation of the Basic Reproduction Ratio R0 in Models for Infectious Diseases in Heterogeneous Populations, J. Math. Bio. 28 (1990), 365–382. https://doi.org/10.1007/BF00178324.
- O. Diekmann, J.A.P. Heesterbeek, M.G. Roberts, The Construction of Next-Generation Matrices for Compartmental Epidemic Models, J. R. Soc. Interface. 7 (2009), 873–885. https://doi.org/10.1098/rsif.2009.0386.
- P. van den Driessche, J. Watmough, Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission, Math. Biosci. 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6.
- A.H. Albargi, M.E. Hajji, Mathematical Analysis of a Two-Tiered Microbial Food-Web Model for the Anaerobic Digestion Process, Math. Biosci. Eng. 20 (2023), 6591–6611. https://doi.org/10.3934/mbe.2023283.
- A. Alshehri, M. El Hajji, Mathematical Study for Zika Virus Transmission With General Incidence Rate, AIMS Math. 7 (2022), 7117–7142. https://doi.org/10.3934/math.2022397.
- M. El Hajji, Mathematical Modeling for Anaerobic Digestion Under the Influence of Leachate Recirculation, AIMS Math. 8 (2023), 30287–30312. https://doi.org/10.3934/math.20231547.
- M. El Hajji, Influence of the Presence of a Pathogen and Leachate Recirculation on a Bacterial Competition, Int. J. Biomath. In Press. https://doi.org/10.1142/s1793524524500293.
- M. El Hajji, A.Y. Al-Subhi, M.H. Alharbi, Mathematical Investigation for Two-Bacteria Competition in Presence of a Pathogen With Leachate Recirculation, Int. J. Anal. Appl. 22 (2024), 45. https://doi.org/10.28924/2291-8639-22-2024-45.