Boundary Layers of Time-Dependent Convection-Diffusion Equations in a Square

Main Article Content

Abir Sboui, Abdelhalim Hasnaoui

Abstract

The aim of this paper is to study the asymptotic behavior for a class of time-dependent convection-diffusion problems in a square = (0, 1) × (0, 1), which is a simplified model of the Oseen equations. By considering this problem in a square, we theoretically treat the case where parabolic and ordinary boundary layers are present. We construct correctors which absorb the singularities of the limit solution; this allows to obtain an approximation of the viscous solution up to the boundary. The expression of the correctors is giving explicitly and the uniform validity of the approximate solution is then proved.

Article Details

References

  1. W. Eckhaus, Asymptotic Analysis of Singular Perturbations, North-Holland, (1979).
  2. J. Grasman, On the Birth of Boundary Layers, Mathematical Centre Tracts 36. Mathematisch Centrum, Amsterdam, (1971).
  3. E. Grenier, O. Guès, Boundary Layers for Viscous Perturbations of Noncharacteristic Quasilinear Hyperbolic Problems, J. Diff. Equ. 143 (1998), 110–146. https://doi.org/10.1006/jdeq.1997.3364.
  4. O. Guès, G. Métivier, M. Williams, K. Zumbrun, Boundary Layer and Long Time Stability for Multi-D Viscous Shocks, Discrete Contin. Dyn. Syst. A. 11 (2004), 131–160. https://doi.org/10.3934/dcds.2004.11.131.
  5. M. Hamouda, R. Temam, Boundary Layers for the Navier–stokes Equations. the Case of a Characteristic Boundary, Georgian Math. J. 15 (2008), 517–530. https://doi.org/10.1515/GMJ.2008.517.
  6. M. Hamouda, R. Temam, Some Singular Perturbation Problems Related to the Navier-Stokes Equations, in: Advances in Deterministic and Stochastic Analysis, World Scientific, 2007: pp. 197–227. https://doi.org/10.1142/9789812770493_0011.
  7. M. Hamouda, C.-Y. Jung, R. Temam, Boundary Layers for the 2D Linearized Primitive Equations, Commun. Pure Appl. Anal. 8 (2009), 335–359. https://doi.org/10.3934/cpaa.2009.8.335.
  8. M. Hamouda, C.Y. Jung, R. Temam, Asymptotic Analysis for the 3d Primitive Equations in a Channel, Discrete Contin. Dyn. Syst. - Ser. S. 6 (2013), 401–422.
  9. C.-Y. Jung, R. Temam, Convection–Diffusion Equations in a Circle: The Compatible Case, J. Math. Pures Appl. 96 (2011), 88–107. https://doi.org/10.1016/j.matpur.2011.03.006.
  10. C.-Y. Jung, R. Temam, Singular Perturbations and Boundary Layer Theory for Convection-Diffusion Equations in a Circle: The Generic Noncompatible Case, SIAM J. Math. Anal. 44 (2012), 4274–4296. https://doi.org/10.1137/110839515.
  11. T. Kato, Remarks on the Euler and Navier-Stokes equations in R 2 , in: Proceedings of Symposia in Pure Mathematics, vol. 45, pp. 1–7. American Mathematical Society, Providence (1986).
  12. R.B. Kellogg, M. Stynes, Corner Singularities and Boundary Layers in a Simple Convection–Diffusion Problem, J. Diff. Equ. 213 (2005), 81–120. https://doi.org/10.1016/j.jde.2005.02.011.
  13. P. Lagerstrom, Matched Asymptotics Expansion, Ideas and Techniques, Springer, New York, (1988).
  14. J.L. Lions, Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, Springer, Berlin, Heidelberg, 1973. https://doi.org/10.1007/BFb0060528.
  15. N. Masmoudi, The Euler Limit of the Navier-Stokes Equations, and Rotating Fluids with Boundary, Arch. Ration. Mech. Anal. 142 (1998), 375–394. https://doi.org/10.1007/s002050050097.
  16. R.E. O’Malley, Singularly Perturbed Linear Two-Point Boundary Value Problems, SIAM Rev. 50 (2008), 459–482. https://doi.org/10.1137/060662058.
  17. O.A. Oleinik, V.N. Samokhin, Mathematical Models in Boundary Layer Theory, Vol. 15, Applied Mathematics and Mathematical Computation, Chapman & Hall/CRC, Boca Raton, (1999).
  18. G.M. Gie, M. Hamouda, A. Sboui, Asymptotic Analysis of the Stokes Equations in a Square at Small Viscosity, Appl. Anal. 95 (2016), 2683–2702. https://doi.org/10.1080/00036811.2015.1105963.
  19. R. Temam, X. Wang, Asymptotic Analysis of the Oseen Type Equations in a Channel at Small Viscosity, Indiana Univ. Math. J. 45 (1996), 863–914. https://www.jstor.org/stable/24899140.
  20. R. Temam, X. Wang, Asymptotic Analysis of the Linearized Navier–Stokes Equations in a General 2D Domain, Asympt. Anal. 14 (1997), 293–321. https://doi.org/10.3233/ASY-1997-14401.
  21. R. Temam, X.M. Wang, Asymptotic Analysis of the Linearized Navier-Stokes Equations in a Channel, Diff. Integral Equ. 8 (1995), 1591–1618. https://doi.org/10.57262/die/1368397749.