Chiti-type Reverse Hölder Inequality and Saint-Venant Theorem for Wedge Domains on Spheres
Main Article Content
Abstract
In this paper, we prove a new weighted reverse Hölder inequality for the first eigenfunction of the Dirichlet eigenvalue problem in a domain completely contained in a wedge in the sphere S2. This inequality is known as the Payne-Rayner inequality or Chiti-type inequality. We also prove an extension of Saint-Venant inequality for the relative torsional rigidity of such domains.
Article Details
References
- L.E. Payne, H.F. Weinberger, A Faber-Krahn Inequality for Wedge-Like Membranes, J. Math. Phys. 39 (1960), 182–188. https://doi.org/10.1002/sapm1960391182.
- C. Bandle, Isoperimetric Inequalities and Applications, Monographs and Studies in Mathematics, Vol. 7, Pitman, Boston, (1980).
- L.E. Payne, Isoperimetric Inequalities for Eigenvalue and Their Applications, Autovalori e Autosoluzioni: Lectures Given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) Held in Chieti, Italy, 1962, G. Fichera (ed.), C.I.M.E. Summer Schools, Vol. 27, 1–58, (1962).
- A. Hasnaoui, L. Hermi, Isoperimetric Inequalities for a Wedge-Like Membrane, Ann. Henri Poinc. 15 (2013), 369–406. https://doi.org/10.1007/s00023-013-0243-y.
- L.E. Payne, M.E. Rayner, An Isoperimetric Inequality for the First Eigenfunction in the Fixed Membrane Problem, J. Appl. Math. Phys. (ZAMP) 23 (1972), 13–15. https://doi.org/10.1007/bf01593198.
- G. Chiti, A Reverse Hölder Inequality for the Eigenfunctions of Linear Second Order Elliptic Operators, Z. Angew. Math. Phys. 33 (1982), 143–148. https://doi.org/10.1007/BF00948319.
- A. Weinstein, Generalized Axially Symmetric Potential Theory, Bull. Amer. Math. Soc. 59 (1953), 20–38. https://doi.org/10.1090/s0002-9904-1953-09651-3.
- J. Ratzkin, A. Treibergs, A Payne-Weinberger Eigenvalue Estimate for Wedge Domains on Spheres, Proc. Amer. Math. Soc. 137 (2009), 2299–2309. https://doi.org/10.1090/s0002-9939-09-09790-1.
- G.A. Philippin, Some Isoperimetric Norm Bounds for the First Eigenfunction of Wedge-Like Membranes, Z. Angew. Math. Phys. 27 (1976), 545–551. https://doi.org/10.1007/BF01591165.
- A. Hasnaoui, L. Hermi, A Sharp Upper Bound for the First Dirichlet Eigenvalue of a Class of Wedge-Like Domains, Z. Angew. Math. Phys. 66 (2015), 2419–2440. https://doi.org/10.1007/s00033-015-0530-1.
- G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Second Edition, Cambridge University Press, Cambridge, (1952).
- F. Brock, F. Chiacchio, A. Mercaldo, Weighted Isoperimetric Inequalities in Cones and Applications, Nonlinear Anal.: Theory Meth. Appl. 75 (2012), 5737–5755. https://doi.org/10.1016/j.na.2012.05.011.
- F. Brock, F. Chiacchio, A. Mercaldo, A Class of Degenerate Elliptic Equations and a Dido’s Problem With Respect to a Measure, J. Math. Anal. Appl. 348 (2008), 356–365. https://doi.org/10.1016/j.jmaa.2008.07.010.
- C. Maderna, S. Salsa, Sharp Estimates for Solutions to a Certain Type of Singular Elliptic Boundary Value Problems in Two Dimensions, Appl. Anal. 12 (1981), 307–321. https://doi.org/10.1080/00036818108839370.