Functions in GTSs and GMSs

Main Article Content

Yasser Farhat, Vadakasi Subramanian

Abstract

In this article, we study the nature of different types of functions, namely, cliquish, lower semi-continuous, and upper semi-continuous functions in generalized Gδ-submaximal, generalized submaximal, and hyperconnected spaces. It also includes a cursory discussion about the properties for generalized Gδ-submaximal, generalized submaximal, and hyperconnected spaces in generalized metric spaces.

Article Details

References

  1. M.R. Ahmadi Zand, R. Khayyeri, Generalized Gδ -Submaximal Spaces, Acta Math. Hungar. 149 (2016), 274–285. https://doi.org/10.1007/s10474-016-0627-9.
  2. S. Al Ghour, A. Al-Omari, T. Noiri, On Homogeneity and Homogeneity Components in Generalized Topological Spaces, Filomat, 27 (2013), 1097–1105. https://www.jstor.org/stable/24896442.
  3. S.P. Arya, M.P. Bhamini, Some Weaker Forms of Semi-Continuous Functions, Ganita, 33 (1982), 124–134.
  4. M. Beddow, D. Rose, Collectionwise Weak Continuity Duals, Acta Math. Hung. 124 (2009), 189–200. https://doi.org/10.1007/s10474-009-8190-2.
  5. N. Biswas, On Characterization of Semi-Continuous Function, Atti Accad. Naz. Lincei Ser. Ottava Rend. Cl. Sci. Fis. Mat. Nat. 48 (1970), 399–402.
  6. J. Borsík, Generalized Oscillations for Generalized Continuities, Tatra Mt. Math. Publ. 49 (2011), 119–125. https://doi.org/10.2478/v10127-011-0031-3.
  7. Á. Császár, Generalized Open Sets, Acta Math. Hung. 75 (1997), 65–87. https://doi.org/10.1023/a:1006582718102.
  8. E. Ekici, Generalized Hyperconnectedness, Acta Math Hung. 133 (2011), 140–147. https://doi.org/10.1007/s10474-011-0086-2.
  9. E. Ekici, Generalized Submaximal Spaces, Acta Math. Hung. 134 (2011), 132–138. https://doi.org/10.1007/s10474-011-0109-z.
  10. J. Ewert, Note on Limits of Simply Continuous and Cliquish Functions, Int. J. Math. Math. Sci. 17 (1994), 447–450. https://doi.org/10.1155/s0161171294000645.
  11. J. Ewert, Characterization of Cliquish Functions, Acta Math. Hung. 89 (2000), 269–276. https://doi.org/10.1023/a:1006762702077.
  12. Z. Frolík, Baire Spaces and Some Generalizations of Complete Metric Spaces, Czechoslovak Math. J. 11 (1961), 237–248. http://dml.cz/dmlcz/100457.
  13. L.A. Fudali, On Cliquish Functions on Product Spaces, Math. Slovaca, 33 (1983), 53–58. http://dml.cz/dmlcz/129052.
  14. Z. Grande, E. Stro ´nska, Some Continuous Operations on Pairs of Cliquish Functions, Tatra Mt. Math. Publ. 44 (2009), 15–25. https://doi.org/10.2478/v10127-009-0044-3.
  15. S. Jafari, T. Noiri, On Strongly θ-Semi-Continuous Functions, Indian J. Pure Appl. Math. 29 (1988), 1195–1201.
  16. E. Korczak-Kubiak, A. Loranty, R.J. Pawlak, Baire Generalized Topological Spaces, Generalized Metric Spaces and Infinite Games, Acta Math. Hung. 140 (2013), 203–231. https://doi.org/10.1007/s10474-013-0304-1.
  17. Z. Li, F. Lin, Baireness on Generalized Topological Spaces, Acta Math. Hung. 139 (2012), 320–336. https://doi.org/10.1007/s10474-012-0284-6.
  18. W.K. Min, Weak Continuity on Generalized Topological Spaces, Acta Math. Hung. 124 (2008), 73–81. https://doi.org/10.1007/s10474-008-8152-0.
  19. W.K. Min, Generalized Continuous Functions Defined by Generalized Open Sets on Generalized Topological Spaces, Acta Math. Hung. 128 (2009), 299–306. https://doi.org/10.1007/s10474-009-9037-6.
  20. A. Neubrunnová, On Quasicontinuous and Cliquish Functions, Cas. Pˇest. Mat. 99 (1974), 109–114. ˇ http://dml.cz/dmlcz/117825.
  21. V. Renukadevi, T. Muthulakshmi, Weak Baire Spaces, Kyungpook Math. J. 55 (2015), 181–189. https://doi.org/10.5666/KMJ.2015.55.1.181.
  22. H.P. Thielman, Types of Functions, Amer. Math. Mon. 60 (1953), 156–161. https://doi.org/10.1080/00029890.1953.11988260.
  23. S. Vadakasi and V. Renukadevi, Properties of Nowhere Dense Sets in GTSs, Kyungpook Math. J. 57 (2017), 199 - 210.
  24. P. Yupapin, S. Vadakasi, Y. Farhat, On Nowhere Dense Sets, Eur. J. Pure Appl. Math. 15 (2022), 403–414. https://doi.org/10.29020/nybg.ejpam.v15i2.4283.
  25. Y. Farhat, S. Vadakasi, Generalized Dense set in Bigeneralized Topological Spaces, Eur. J. Pure Appl. Math. 16 (2023), 2049–2065. https://doi.org/10.29020/nybg.ejpam.v16i4.4911.