D∗-Local Functions in Ideal Spaces

Main Article Content

Yasser Farhat, Rock Ramesh, Alphymol Varghese, Vadakasi Subramanian

Abstract

In this study, a novel operation is introduced, which creates a local function of A regard to I and τ respectively denoted as AD(I,τ)={y∈Y|V∩A∉I, for each V∈τD(y)} where τD(y)={V∈τD|y∈V}. We then look into some of the fundamental characteristics and attributes of AD(I,τ). Additionally, we look into an operator η: P(Y)→τ provides η(E)=Y−[Y−E]D for all E∈P(Y). Then the closure operator clD(E)=ED∪E which forms the topology and the relation τD={V⊆Y|clD(Y−V)=Y−V}.

Article Details

References

  1. A. Al-Omari, T. Noiri, Local Closure Functions in Ideal Topological Spaces, Novi Sad J. Math. 43 (2013), 139–149.
  2. D. Jankovic, T.R. Hamlett, New Topologies from Old via Ideals, Amer. Math. Mon. 97 (1990), 295–310. https://doi.org/10.1080/00029890.1990.11995593.
  3. K.P. Hart, J.i. Nagata, J.E. Vaughan, Encyclopedia of General Topology, Elsevier, 2003.
  4. M.V. Kumar, On δ-Open Sets in Topology, In Press.
  5. K. Kuratowski, Topology: Volume I, Elsevier, 2014.
  6. M.N. Mukherjee, B. Roy, R. Sen, On Extensions of Topological Spaces in Terms of Ideals, Topol. Appl. 154 (2007), 3167–3172. https://doi.org/10.1016/j.topol.2007.08.014.
  7. P. Periyasamy, P. Rock Ramesh, δ-Local Closure Functions in Ideal Topological Spaces, Adv. Math., Sci. J. 9 (2020), 2379–2388. https://doi.org/10.37418/amsj.9.5.1.
  8. N. Velicko, H-Closed Topological Spaces, Mat. Sb. (N.S.), 70 (1966), 98–112.
  9. R. Vaidyanathaswamy, Set Topology, Courier Corporation, 1960.
  10. R. Vaidyanathaswamy, The Localisation Theory in Set-Topology, Proc. Indian Acad. Sci.-Sect. A. 20 (1944), 51–61.