Mathematical Analysis of Nonlinear Reaction Diffusion Process at Carbon Dioxide Absorption in Concentrated Mixtures of 2-Amino-2-Methyl-1-Proponal and 1,8-Diamino-p-Methane

Main Article Content

A. Uma, R. Swaminathan

Abstract

A mathematical model of carbon dioxide (CO2) absorption in an aqueous solution consisting of two reactants, 2-amino-2-methyl-1-proponal and 1,8-diamino-p-methane is considered. Akbari Ganji Method and Differential Transform Method are implemented to resolve the system of nonlinear equations, yielding an analytical formulation for the concentration of carbon dioxide, 2-amino-2-methyl-1-proponal, 1,8-diamino-p-methane and the molar flux in-terms of reaction rate constants. The obtained analytical findings are used to evaluate the different diffusion parameters and compared with numerical results. By assessing Matlab results with analytical findings, a successful outcome is discovered. Moreover, the influence of parameters on molar flux is examined. Also, graphical representations are presented and discussed here. The new analytical results contribute to optimizing the consistency of this model. The ensuring outcomes have been verified utilizing the existing numerical data with prior findings, and we are then presented with an adequate level of agreement.

Article Details

References

  1. S. Inoue, N. Yamazaki, In Organic and Bioorganic Chemistry of Carbon Dioxide, Wiley, 1982.
  2. A.L. Kohl, R.B. Nielsen, Gas Purification, Gulf Professional Publishing, 1997.
  3. M. Caplow, Kinetics of Carbamate Formation and Breakdown, J. Amer. Chem. Soc. 90 (1968), 6795–6803. https://doi.org/10.1021/ja01026a041.
  4. P.V. Danckwerts, The Reaction of CO2 with Ethanolamines, Chem. Eng. Sci. 34 (1979), 443–446. https://doi.org/10.1016/0009-2509(79)85087-3.
  5. T. Mimura, T. Suda, I. Iwaki, A. Honda, H. Kumazawa, Kinetics of Reaction between Carbon Dioxide and Sterically Hindered Amines for Carbon Dioxide Recovery from Power Plant Flue Gases, Chem. Eng. Comm. 170 (1998), 245–260. https://doi.org/10.1080/00986449808912745.
  6. X. Luo, A. Hartono, H.F. Svendsen, Comparative Kinetics of Carbon Dioxide Absorption in Unloaded Aqueous Monoethanolamine Solutions Using Wetted Wall and String of Discs Columns, Chem. Eng. Sci. 82 (2012), 31–43. https://doi.org/10.1016/j.ces.2012.07.001.
  7. N.J.M.C. Penders-van Elk, P.W.J. Derks, S. Fradette, G.F. Versteeg, Kinetics of Absorption of Carbon Dioxide in Aqueous MDEA Solutions with Carbonic Anhydrase at 298K, Int. J. Greenhouse Gas Control 9 (2012), 385–392. https://doi.org/10.1016/j.ijggc.2012.04.008.
  8. A.T. Zoghi, F. Feyzi, S. Zarrinpashneh, Experimental Investigation on the Effect of Addition of Amine Activators to Aqueous Solutions of N-Methyldiethanolamine on the Rate of Carbon Dioxide Absorption, Int. J. Greenhouse Gas Control 7 (2012) 12–19. https://doi.org/10.1016/j.ijggc.2011.12.001.
  9. T. Chakravarthy, U.K. Phulkan, R.H. Weiland, Reaction of Acid Gasses with Mixtures of Amines, Chem. Eng. Progress. 81 (1985), 32-36.
  10. K.J. Oh, B.M. Min, S.S. Kim, K. Hyun, S.W. Park, Absorption of Carbon Dioxide into Aqueous Solution of 2-Amino-2-Methy-1-Propanol and 1, 8-Diamino-p-Menthane, Korean J. Chem. Eng. 29 (2012), 946–951. https://doi.org/10.1007/s11814-011-0249-4.
  11. S. Paul, A.K. Ghoshal, B. Mandal, Kinetics of Absorption of Carbon Dioxide into Aqueous Solution of 2-(1-Piperazinyl)-Ethylamine, Chem. Eng. Sci. 64 (2009), 313–321. https://doi.org/10.1016/j.ces.2008.10.025.
  12. M. Subramaniam, I. Krishnaperumal, R. Lakshmanan, Theoretical Analysis of Mass Transfer with Chemical Reaction Using Absorption of Carbon Dioxide into Phenyl Glycidyl Ether Solution, Appl. Math. 03 (2012), 1179–1186. https://doi.org/10.4236/am.2012.310172.
  13. A. Anitha, K. Saravanakumar, L. Rajendran, Homotopy Analysis Method to Determine the Concentration Profile of Carbon Dioxide and Two Reactants in Stirred Semi-Batch Tank with a Planar Gas Liquid, Indian J. Appl. Res. 6 (2014), 365-373.
  14. M.R. Akbari, D.D. Ganji, A.K. Rostami, M. Nimafar, Solving Nonlinear Differential Equation Governing on the Rigid Beams on Viscoelastic Foundation by AGM, J. Marine. Sci. Appl. 14 (2015), 30–38. https://doi.org/10.1007/s11804-015-1284-z.
  15. M.R. Akbari, D.D. Ganji, M. Nimafar, A.R. Ahmadi, Significant Progress in Solution of Nonlinear Equations at Displacement of Structure and Heat Transfer Extended Surface by New AGM Approach, Front. Mech. Eng. 9 (2014), 390–401. https://doi.org/10.1007/s11465-014-0313-y.
  16. B. Manimegalai, M.E.G. Lyons, L. Rajendran, A Kinetic Model for Amperometric Immobilized Enzymes at Planar, Cylindrical and Spherical Electrodes: The Akbari-Ganji Method, J. Electroanal. Chem. 880 (2021), 114921. https://doi.org/10.1016/j.jelechem.2020.114921.
  17. N.B. Meresht, D.D. Ganji, Solving Nonlinear Differential Equation Arising in Dynamical Systems by AGM, Int. J. Appl. Comput. Math. 3 (2016), 1507–1523. https://doi.org/10.1007/s40819-015-0131-x.
  18. V. Sylvia, R.J. Salomi, L. Rajendran, M.E.G. Lyons, Theoretical and Numerical Analysis of Nonlinear Processes in Amperometric Enzyme Electrodes with Cyclic Substrate Conversion, Electrochem. 3 (2022), 70–88. https://doi.org/10.3390/electrochem3010005.
  19. L. Rajendran, R. Swaminathan, M.C. Devi, A Closer Look of Nonlinear Reaction Diffusion Equations, Nova Publisher, New York, 2020.
  20. A. Reena, SG. Karpagavalli, L. Rajendran, B. Manimegalai, R. Swaminathan, Theoretical Analysis of Putrescine Enzymatic Biosensor with Optical Oxygen Transducer in Sensitive Layer Using Akbari–Ganji Method, Int. J. Electrochem. Sci. 18 (2023), 100113. https://doi.org/10.1016/j.ijoes.2023.100113.
  21. K. Ranjani, R. Swaminathan, S.G. Karpagavalli, Mathematical Modelling of a Mono-Enzyme Dual Amperometric Biosensor for Enzyme-Catalyzed Reactions Using Homotopy Analysis and Akbari-Ganji Methods, Int. J. Electrochem. Sci. 18 (2023), 100220. https://doi.org/10.1016/j.ijoes.2023.100220.
  22. R. Swaminathan, K.L. Narayanan, V. Mohan, K. Saranya, L. Rajendran, Reaction/Diffusion Equation with Michaelis-Menten Kinetics in Microdisk Biosensor: Homotopy Perturbation Method Approach, Int. J. Electrochem. Sci. 14 (2019), 3777–3791. https://doi.org/10.20964/2019.04.13.
  23. S. Loghambal, L. Rajendran, Mathematical Modeling of Diffusion and Kinetics in Amperometric Immobilized Enzyme Electrodes, Electrochimica Acta 55 (2010), 5230–5238. https://doi.org/10.1016/j.electacta.2010.04.050.
  24. R. Swaminathan, R. Saravanakumar, K. Venugopal, L. Rajendran, Analytical Solution of Non Linear Problems in Homogeneous Reactions Occur in the Mass-Transfer Boundary Layer: Homotopy Perturbation Method, Int. J. Electrochem. Sci. 16 (2021), 210644. https://doi.org/10.20964/2021.06.51.
  25. R. Swaminathan, K. Venugopal, M. Rasi, M. Abukhaled, L. Rajendran, Analytical Expressions for the Concentration and Current in the Reduction of Hydrogen Peroxide at a Metal-Dispersed Conducting Polymer Film, Quim. Nova, 43 (2020), 58-65. https://doi.org/10.21577/0100-4042.20170454.
  26. R. Swaminathan, M. Chitra Devi, L. Rajendran, K. Venugopal, Sensitivity and Resistance of Amperometric Biosensors in Substrate Inhibition Processes, J. Electroanal. Chem. 895 (2021), 115527. https://doi.org/10.1016/j.jelechem.2021.115527.
  27. R. Usha Rani, L. Rajendran, M.E.G. Lyons, Steady-State Current in Product Inhibition Kinetics IN AN Amperometric Biosensor: Adomian Decomposition and Taylor Series Method, J. Electroanal. Chem. 886 (2021), 115103. https://doi.org/10.1016/j.jelechem.2021.115103.
  28. R. Usha Rani, L. Rajendran, Taylor’s Series Method for Solving the Nonlinear Reaction-Diffusion Equation in the Electroactive Polymer Film, Chem. Phys. Lett. 754 (2020), 137573. https://doi.org/10.1016/j.cplett.2020.137573.
  29. J.K Zhou, Differential Transformation and Its Applications for Electrical Circuits, Huazhong University Press, 1986.
  30. A. Arikoglu, I. Ozkol, Solution of Boundary Value Problems for Integro-Differential Equations by Using Differential Transform Method, Appl. Math. Comput. 168 (2005), 1145–1158. https://doi.org/10.1016/j.amc.2004.10.009.
  31. M.T. Alquran, Applying Differential Transform Method to Nonlinear Partial Differential Equations: A Modified Approach, Appl. Appl. Math.: Int. J. 7 (2012), 155-163.
  32. F. Ayaz, Applications of Differential Transform Method to Differential-Algebraic Equations, Appl. Math. Comput. 152 (2004), 649–657. https://doi.org/10.1016/s0096-3003(03)00581-2.
  33. V.S. Ertürk, S. Momani, Solving Systems of Fractional Differential Equations Using Differential Transform Method, J. Comput. Appl. Math. 215 (2008), 142–151. https://doi.org/10.1016/j.cam.2007.03.029.
  34. A. Tari, S. Shahmorad, Differential Transform Method for the System of Two-Dimensional Nonlinear Volterra Integro-Differential Equations, Comput. Math. Appl. 61 (2011), 2621–2629. https://doi.org/10.1016/j.camwa.2011.03.007.
  35. Z.M. Odibat, Differential Transform Method for Solving Volterra Integral Equation with Separable Kernels, Math. Comput. Model. 48 (2008), 1144–1149. https://doi.org/10.1016/j.mcm.2007.12.022.