On the Affine and Affine Polarized k-Symplectic Manifolds

Main Article Content

El Mokhtar Fanich, Abdallah Labsir, Said Essabab

Abstract

We are interested in studying the affine and the affine polarized k-symplectic manifolds exploiting the action of the polarized k-symplectic group Sp(k,n;R), especially when it acts properly and discontinuously without fixed point in order to construct a particular class of affine polarized k-symplectic manifolds of odd dimension 2k’+1 with k’∈N∗ which will be a generalization of the case of dimension 3 studied in [8].

Article Details

References

  1. A. Aubert, Structures Affinées et Pseudo-Métriques Invariantes à Gauche sur des Groupes de Lie, Thesis, Université Montpellier II, https://theses.fr/1996MON20225.
  2. L. Auslander, Examples of Locally Affine Spaces, Ann. Math. 64 (1956), 255–259. https://doi.org/10.2307/1969972.
  3. A. Awane, Sur une Généralisation des Structures Symplectiques, Thesis, University of Mulhouse, Strasbourg, France, 1984.
  4. A. Awane, k-Symplectic Structures, J. Math. Phys. 33 (1992), 4046–4052. https://doi.org/10.1063/1.529855.
  5. A. Awane, Generalized Polarized Manifolds, Rev. Mat. Complut. 21 (2008), 251–264. https://doi.org/10.5209/rev_rema.2008.v21.n1.16465.
  6. A. Awane, M. Goze, Pfaffian Systems, k-Symplectic Systems, Springer, Dordrecht, 2000. https://doi.org/10.1007/978-94-015-9526-1.
  7. E. Said, F. El Mokhtar, A. Azzouz, Topological and Geometrical Properties of k-Symplectic Structures, Axioms 11 (2022), 273. https://doi.org/10.3390/axioms11060273.
  8. F. El Mokhtar, E. Said, An Infinite Family of Compact, Complete, and Locally Affine k-Symplectic Manifolds of Dimension Three, Symmetry 13 (2021), 2159. https://doi.org/10.3390/sym13112159.
  9. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. II. Interscience Publishers, New York-London, 1963.
  10. Y. Nambu, Generalized Hamiltonian Dynamics, Phys. Rev. D. 7 (1973), 2405–2412. https://doi.org/10.1103/PhysRevD.7.2405.
  11. T. Sari, Sur les Variétés de Contact Localement Affines, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 809-812.
  12. T. Sari, Sur les Variétés de Contact Affines Plates, In: Séminaire Gaston Darboux de Géométrie et Topologie Différentielle, Université de Montpellier II, (1991-1992), 125-158.
  13. J.A. Wolf, Spaces of Constant Curvature, McGraw-Hill, 1967.