Three Point Boundary Value Problems for Generalized Fractional Integro Differential Equations
Main Article Content
Abstract
This article deals with some existence results for a class of boundary value problem with three-point boundary conditions involving a nonlinear θ-Caputo fractional proportional integro differential equation. By means of some standard fixed point theorems, sufficient conditions for the existence of solutions are presented. Additionally, some applications of the main results are demonstrated.
Article Details
References
- J.S. Jacob, J.H. Priya, A. Karthika, Applications of Fractional Calculus in Science and Engineering, J. Crit. Rev. 7 (2020), 4385–4394.
- H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A New Collection of Real World Applications of Fractional Calculus in Science and Engineering, Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019.
- R.L. Magin, Fractional Calculus in Bioengineering, Part 1, Crit. Rev. Biomed. Eng. 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.10.
- M.A. Matlob, Y. Jamali, The Concepts and Applications of Fractional Order Differential Calculus in Modeling of Viscoelastic Systems: A Primer, Crit. Rev. Biomed. Eng. 47 (2019), 249–276. https://doi.org/10.1615/critrevbiomedeng.2018028368.
- R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A New Definition of Fractional Derivative, J. Comput. Appl. Math. 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002.
- D.R. Anderson, D.J. Ulness, Newly Defined Conformable Derivatives, Adv. Dyn. Syst. Appl. 10 (2015), 109–137.
- D.R. Anderson, Second-Order Self-Adjoint Differential Equations Using a Proportional-Derivative Controller, Commun. Appl. Nonlinear Anal. 24 (2017), 17–48.
- F. Jarad, T. Abdeljawad, J. Alzabut, Generalized Fractional Derivatives Generated by a Class of Local Proportional Derivatives, Eur. Phys. J. Spec. Top. 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7.
- M.I. Abbas, M.A. Ragusa, On the Hybrid Fractional Differential Equations with Fractional Proportional Derivatives of a Function with Respect to a Certain Function, Symmetry 13 (2021), 264. https://doi.org/10.3390/sym13020264.
- M.I. Abbas, Controllability and Hyers-Ulam Stability Results of Initial Value Problems for Fractional Differential Equations via Generalized Proportional-Caputo Fractional Derivative, Miskolc Math. Notes, 22 (2021), 491–502. https://doi.org/10.18514/mmn.2021.3470.
- M.I. Abbas, Existence Results and the Ulam Stability for Fractional Differential EquationsWith Hybrid ProportionalCaputo Derivatives, J. Nonlinear Funct. Anal. 48 (2020), 48. https://doi.org/10.23952/jnfa.2020.48.
- B. Khaminsou, C. Thaiprayoon, W. Sudsutad, S.A. Jose, Qualitative Analysis of a Proportional Caputo Fractional Pantograph Differential Equation With Mixed Nonlocal Conditions, Nonlinear Funct. Anal. Appl. 26 (2021), 197- 223. https://doi.org/10.22771/nfaa.2021.26.01.14.
- B. Khaminsou, C. Thaiprayoon, J. Alzabut, W. Sudsutad, Nonlocal Boundary Value Problems for IntegroDifferential Langevin Equation via the Generalized Caputo Proportional Fractional Derivative, Bound. Value Probl. 2020 (2020), 176. https://doi.org/10.1186/s13661-020-01473-7.
- W. Shammakh, H.Z. Alzumi, Existence Results for Nonlinear Fractional Boundary Value Problem Involving Generalized Proportional Derivative, Adv. Differ. Equ. 2019 (2019), 94. https://doi.org/10.1186/s13662-019-2038-z.
- B. Ahmad, A. Alsaedi, B.S. Alghamdi, Analytic Approximation of Solutions of the Forced Duffing Equation With Integral Boundary Conditions, Nonlinear Anal.: Real World Appl. 9 (2008), 1727–1740. https://doi.org/10.1016/j.nonrwa.2007.05.005.
- B. Ahmad, A. Alsaedi, Existence of Approximate Solutions of the Forced Duffing Equation With Discontinuous Type Integral Boundary Conditions, Nonlinear Anal.: Real World Appl. 10 (2009), 358–367. https://doi.org/10.1016/j.nonrwa.2007.09.004.
- M. Benchohra, S. Hamani, J.J. Nieto, The Method of Upper and Lower Solutions for Second Order Differential Inclusions with Integral Boundary Conditions, Rocky Mountain J. Math. 40 (2010), 13–26. https://doi.org/10.1216/rmj-2010-40-1-13.
- Y.K. Chang, J.J. Nieto, W.S. Li, On Impulsive Hyperbolic Differential Inclusions with Nonlocal Initial Conditions, J. Optim. Theory Appl. 140 (2008), 431–442. https://doi.org/10.1007/s10957-008-9468-1.
- F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More Properties of the Proportional Fractional Integrals and Derivatives of a Function With Respect to Another Function, Adv. Differ. Equ. 2020 (2020), 303. https://doi.org/10.1186/s13662-020-02767-x.
- D. Vivek, E.M. Elsayed, K. Kanagarajan, Existence and Uniqueness Results for Ψ-Fractional Integro-Differential Equations With Boundary Conditions, Publ. Inst. Math. (Belgr). 107 (2020), 145–155. https://doi.org/10.2298/pim2021145v.
- M.A. Krasnoselskii, Two Remarks on the Method of Successive Approximations, Uspekhi Mat. Nauk. 10 (1955), 123–127.
- B. Ahmad, J.J. Nieto, Existence Results for Nonlinear Boundary Value Problems of Fractional Integrodifferential Equations with Integral Boundary Conditions, Bound. Value Probl. 2009 (2009), 708576. https://doi.org/10.1155/2009/708576.
- A. Alsaedi, M. Alsulami, H. Srivastava, B. Ahmad, S. Ntouyas, Existence Theory for Nonlinear Third-Order Ordinary Differential Equations with Nonlocal Multi-Point and Multi-Strip Boundary Conditions, Symmetry 11 (2019), 281. https://doi.org/10.3390/sym11020281.
- P. karthikeyan, K. Venkatachalam, Some Results on Multipoint Integral Boundary Value Problems for Fractional Integro-Differential Equations, Progr. Fract. Differ. Appl. 7 (2021), 127–136. https://doi.org/10.18576/pfda/070207.
- R. Arul, P. Karthikeyan, K. Karthikeyan, P. Geetha, Y. Alruwaily, L. Almaghamsi, E. El-hady, On Nonlinear ΨCaputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions, Symmetry 15 (2022), 5. https://doi.org/10.3390/sym15010005.