Exploring Profit Opportunities in Intuitionistic Fuzzy Metric Spaces via Edelstein Type Mappings
Main Article Content
Abstract
This paper establishes a break-even point theorem concerning a set of mappings adhering to an Edelstein-type contractive criterian within intuitionistic fuzzy metric domains. It explores the break-even analysis within a straightforward total cost-revenue model applicable to dynamic businesses. Utilizing the coincident point theorem within intuitionistic fuzzy metric space, the study demonstrates the inclination of profit-sensitive (or loss-sensitive) dynamic businesses towards their respective break-even points.
Article Details
References
- K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87–96. https://doi.org/10.1016/s0165-0114(86)80034-3.
- M. Abbas, N. Saleem, M. De la Sen, Optimal Coincidence Point Results in Partially Ordered Non-Archimedean Fuzzy Metric Spaces, Fixed Point Theory Appl. 2016 (2016), 44. https://doi.org/10.1186/s13663-016-0534-3.
- S. Banach, Sur les Opérations dans les Ensembles Abstraits et leur Application aux Équations Intégrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
- M. Dolmatova, A. Vasin, H. Gao, Supply Function Auction for Linear Asymmetric Oligopoly: Equilibrium and Convergence, Procedia Computer Sci. 55 (2015), 112–118. https://doi.org/10.1016/j.procs.2015.07.015.
- M. Edelstein, On Fixed and Periodic Points Under Contractive Mappings, J. London Math. Soc. s1-37 (1962), 74–79. https://doi.org/10.1112/jlms/s1-37.1.74.
- A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7.
- A. Hussain, U. Ishtiaq, K. Ahmed, H. Al-Sulami, On Pentagonal Controlled Fuzzy Metric Spaces with an Application to Dynamic Market Equilibrium, J. Function Spaces. 2022 (2022), 5301293. https://doi.org/10.1155/2022/5301293.
- M. Jeyaraman, D. Poovaragavan, Fixed Point Theorems in Generalized Intuitionistic Fuzzy Metric Spaces Using Contractive Condition of Integral Type, Malaya J. Mat. S (2019), 126–129. https://doi.org/10.26637/mjm0s01/0030.
- M. Jeyaraman, Some Common Fixed Point Theorems for (Phi, Psi)-Weak Contractions in Intuitionistic Generalized Fuzzy Cone Metric Spaces, Malaya J. Mat. S (2019), 154–159. https://doi.org/10.26637/mjm0s01/0036.
- G. Jungck, S. Radenovic, S. Radojevic, V. Rakocevic, Common Fixed Point Theorems for Weakly Compatible Pairs on Cone Metric Spaces, Fixed Point Theory Appl. 2009 (2009), 643840. https://doi.org/10.1155/2009/643840.
- G. Jungck, Periodic and Fixed Points, and Commuting Mappings, Proc. Amer. Math. Soc. 76 (1979), 333–338.
- I. Kramosil, J. Michálek, Fuzzy Metrics and Statistical Metric Spaces, Kybernetika, 11 (1975), 336–344. http://dml.cz/dmlcz/125556.
- I. Mezník, Banach Fixed Point Theorem and the Stability of the Market, in: Proceedings of the International Conference on Mathematics Education into the 21st Century Project, The Decidable and the Undecidable in Mathematics Education, Brno, Czech Republic, 2003.
- D. Mihe¸t, On Fuzzy Contractive Mappings in Fuzzy Metric Spaces, Fuzzy Sets Syst. 158 (2007), 915–921. https://doi.org/10.1016/j.fss.2006.11.012.
- Z. Mustafa, V. Parvaneh, M. Abbas, J.R. Roshan, Some Coincidence Point Results for Generalized (ψ, φ)-Weakly Contractive Mapping in Ordered G-Metric Spaces, Fixed Point Theory Appl. 2013 (2013), 326. https://doi.org/10.1186/1687-1812-2013-326.
- J.H. Park, Intuitionistic Fuzzy Metric Spaces, Chaos Solitons Fractals. 22 (2004), 1039–1046. https://doi.org/10.1016/j.chaos.2004.02.051.
- S. Shukla, D. Gopal, W. Sintunavarat, A New Class of Fuzzy Contractive Mappings and Fixed Point Theorems, Fuzzy Sets Syst. 350 (2018), 85–94. https://doi.org/10.1016/j.fss.2018.02.010.
- S. Shukla, N. Dubey, R. Shukla, I. Mezník, Coincidence Point of Edelstein Type Mappings in Fuzzy Metric Spaces and Application to the Stability of Dynamic Markets, Axioms. 12 (2023), 854. https://doi.org/10.3390/axioms12090854.
- Naveen Mani, Megha Pingale, Rahul Shukla, Renu Pathak, Fixed point theorems in fuzzy b-metric spaces using two different t-norms, Adv. Fixed Point Theory, 13 (2023), 29. https://doi.org/10.28919/afpt/8235.
- V. Gupta, G. Jungck, N. Mani, Common Fixed Point Theorems for New Contraction Without Continuity Completeness and Compatibility Property in Partially Ordered Fuzzy Metric Spaces, Proc. Jangjeon Math. Soc. 22 (2019), 51–57.
- V. Gupta, R.K. Saini, N. Mani, A.K. Tripathi, Fixed Point Theorems Using Control Function in Fuzzy Metric Spaces, Cogent Math. 2 (2015), 1053173. https://doi.org/10.1080/23311835.2015.1053173.
- V. Gupta, N. Mani, R. Sharma, A.K. Tripathi, Some Fixed Point Results and Their Applications on Integral Type Contractive Condition in Fuzzy Metric Spaces, Bol. Soc. Paran. Mat. 40 (2022), 1–9. https://doi.org/10.5269/bspm.51777.
- L.A. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.