Weakly Quasi (τ1, τ2)-Continuous Functions

Main Article Content

Monchaya Chiangpradit, Supannee Sompong, Chawalit Boonpok

Abstract

This paper deals with the notion of weakly quasi (τ1, τ2)-continuous functions. Furthermore, some characterizations of weakly quasi (τ1, τ2)-continuous functions are discussed.

Article Details

References

  1. S.P. Arya, M.P. Bhamini, Some Weaker Forms of Semi-Continuous Functions, Ganita, 33 (1982), 124–134.
  2. T. Banzaru, N. Crivat, Structures Uniformes sur l’Espace des Parties d’un Espace Uniforme et Quasicontinuité des Applications Multivoques, Bul. St. Tehn. Inst. Politehn. "Traian Vuia", Timi¸soara, Ser. Mat. Fiz. Mec. Teor. Apl. 20 (1975), 135–136.
  3. C. Boonpok, N. Srisarakham, (τ1, τ2)-Continuity for Functions, Asia Pac. J. Math. 11 (2024), 21.
  4. C. Boonpok and P. Pue-on, Characterizations of almost (τ1, τ2)-continuous functions, Int. J. Anal. Appl. 22 (2024), 33. https://doi.org/10.28924/2291-8639-22-2024-33.
  5. C. Boonpok, C. Klanarong, On Weakly (τ1, τ2)-Continuous Functions, Eur. J. Pure Appl. Math. 17 (2024), 416–425. https://doi.org/10.29020/nybg.ejpam.v17i1.4976.
  6. C. Boonpok, J. Khampakdee, Almost Strong θ(Λ, p)-Continuity for Functions, Eur. J. Pure Appl. Math. 17 (2024), 300–309. https://doi.org/10.29020/nybg.ejpam.v17i1.4975.
  7. C. Boonpok, N. Srisarakham, Weak Forms of (Λ, b)-Open Sets and Weak (Λ, b)-Continuity, Eur. J. Pure Appl. Math. 16 (2023), 29–43. https://doi.org/10.29020/nybg.ejpam.v16i1.4571.
  8. C. Boonpok, θ(*)-Precontinuity, Mathematica, 65 (2023), 31–42. https://doi.org/10.24193/mathcluj.2023.1.04.
  9. C. Boonpok, On Some Spaces via Topological Ideals, Open Math. 21 (2023), 20230118. https://doi.org/10.1515/math-2023-0118.
  10. C. Boonpok, C. Viriyapong, Upper and Lower Almost Weak (τ1, τ2)-Continuity, Eur. J. Pure Appl. Math. 14 (2021), 1212–1225. https://doi.org/10.29020/nybg.ejpam.v14i4.4072.
  11. C. Boonpok, Upper and Lower β(*)-Continuity, Heliyon, 7 (2021), e05986. https://doi.org/10.1016/j.heliyon.2021.e05986.
  12. C. Boonpok, (τ1, τ2)δ-Semicontinuous Multifunctions, Heliyon, 6 (2020), e05367. https://doi.org/10.1016/j.heliyon.2020.e05367.
  13. C. Boonpok, On Characterizations of *-Hyperconnected Ideal Topological Spaces, J. Math. 2020 (2020), 9387601. https://doi.org/10.1155/2020/9387601.
  14. C. Boonpok, Weak Quasi Continuity for Multifunctions in Ideal Topological Spaces, Adv. Math., Sci. J. 9 (2020), 339–355. https://doi.org/10.37418/amsj.9.1.28.
  15. C. Boonpok, On Continuous Multifunctions in Ideal Topological Spaces, Lobachevskii J. Math. 40 (2019), 24–35. https://doi.org/10.1134/s1995080219010049.
  16. C. Boonpok, C. Viriyapong and M. Thongmoon, On upper and lower (τ1, τ2)-precontinuous multifunctions, J. Math. Computer Sci. 18 (2018), 282–293. https://doi.org/10.22436/jmcs.018.03.04.
  17. C. Boonpok, Almost (g, m)-Continuous Functions, Int. J. Math. Anal. 4 (2010), 1957–1964.
  18. C. Boonpok, M-Continuous Functions in Biminimal Structure Spaces, Far East J. Math. Sci. 43 (2010), 41–58.
  19. T. Duangphui, C. Boonpok, C. Viriyapong, Continuous Functions on Bigeneralized Topological Spaces, Int. J. Math. Anal. 5 (2011), 1165–1174.
  20. A. Kar, P. Bhattacharyya, Weakly Semi-Continuous Functions, J. Indian Acad. Math. 8 (1986), 83–93.
  21. K. Laprom, C. Boonpok, C. Viriyapong, β(τ1, τ2)-Continuous Multifunctions on Bitopological Spaces, J. Math. 2020 (2020), 4020971. https://doi.org/10.1155/2020/4020971.
  22. N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Mon. 70 (1963), 36–41. https://doi.org/10.1080/00029890.1963.11990039.
  23. N. Levine, A Decomposition of Continuity in Topological Spaces, Amer. Math. Mon. 68 (1961), 44–46. https://doi.org/10.2307/2311363.
  24. S. Marcus, Sur les Fonctions Quasicontinues au Sens de S. Kempisty, Colloq. Math. 8 (1961), 47–53.
  25. A. Neubrunnová, On Certain Generalizations of the Notions of Continuity, Mat. Casopis, 23 (1973), 374–380. http://dml.cz/dmlcz/126571.
  26. T. Noiri, V. Popa, Some Properties of Upper and Lower θ-Quasi Continuous Multifunctions, Demonstr. Math. 38 (2005), 223–234. https://doi.org/10.1515/dema-2005-0124.
  27. T. Noiri, V. Popa, Weakly Quasi Continuous Multifunctions, Anal. Univ. Timi¸soara, Ser. St. Mat. 26 (1988), 33–38.
  28. T. Noiri, Properties of Some Weak Forms of Continuity, Int. J. Math. Math. Sci. 10 (1987), 97–111. https://doi.org/10.1155/s0161171287000139.
  29. V. Popa, T. Noiri, Almost Quasi Continuous Multifunctions, Tatra Mt. Math. Publ. 14 (1998), 81–90.
  30. V. Popa, T. Noiri, On θ-Quasi Continuous Multifunctions, Demonstr. Math. 28 (1995), 111–122.
  31. V. Popa, On the Decomposition of the Quasi-Continuity in Topological Spaces (Romanian), Stud. Circ. Mat. 30 (1978), 31–35.
  32. V. Popa, C. Stan, On a Decomposition of Quasicontinuity in Topological Spaces, Stud. Cerc. Mat. 25 (1973), 41–43.
  33. P. Pue-on, C. Boonpok, θ(Λ, p)-Continuity for Functions, Int. J. Math. Comput. Sci. 19 (2024), 491–495.
  34. N. Srisarakham, C. Boonpok, On characterizations of δp(Λ,s)-D1 spaces, Int. J. Math. Comput. Sci. 18 (2023), 743–747
  35. N. Srisarakham, C. Boonpok, Almost (Λ, p)-Continuous Functions, Int. J. Math. Comput. Sci. 18 (2023), 255–259.
  36. M. Thongmoon, C. Boonpok, Strongly θ(Λ, p)-Continuous Functions, Int. J. Math. Comput. Sci. 19 (2024), 475–479.
  37. N. Viriyapong, S. Sompong, C. Boonpok, (τ1, τ2)-Extremal Disconnectedness in Bitopological Spaces, Int. J. Math. Comput. Sci. 19 (2024), 855–860.
  38. C. Viriyapong, C. Boonpok, (Λ,sp)-Continuous Functions, WSEAS Trans. Math. 21 (2022), 380–385.
  39. C. Viriyapong, C. Boonpok, (τ1, τ2)α-Continuity for Multifunctions, J. Math. 2020 (2020), 6285763. https://doi.org/10.1155/2020/6285763.