An Algorithm for Construction of Optimal Integration Formulas in Hilbert Spaces and Its Realization

Main Article Content

Kh. M. Shadimetov, A. R. Hayotov, G. N. Akhmadaliev

Abstract

It is known that many problems in science and technology are reduced to the calculation of singular or regular integrals. Basically, these integrals are calculated approximately using quadrature and cubature formulas. In the present paper we develop an algorithm for construction of optimal quadrature formulas in some Hilbert spaces based on discrete analogues of the linear differential operators. Then we apply the algorithm to construct optimal quadrature formulas which are exact for hyperbolic functions and polynomials. We get explicit expressions for the coefficients of the optimal quadrature formulas. The obtained optimal quadrature formulas have m-th order of convergence.

Article Details

References

  1. J.H. Ahlberg, E.N. Nilson, J.L. Walsh, The Theory of Splines and Their Applications, Academic Press, New York, 1967.
  2. G.N. Ahmadaliev, A.R. Hayotov, A Discrete Analogue of the Differential Operator d2m/dx2m − 2ω2d2m−2/dx2m−2 + ω4d2m−4/dx2m−4, Uzbek Math. J. 3 (2017), 10–22.
  3. N.D. Boltaev, A.R. Hayotov, Kh.M. Shadimetov, Construction of Optimal Quadrature Formulas for Fourier Coefficients in Sobolev Space L2(m)(0,1), Numer. Algor. 74 (2016), 307–336. https://doi.org/10.1007/s11075-016-0150-7.
  4. N.D. Boltaev, A.R. Hayotov, G.V. Milovanovi´c, Kh.M. Shadimetov, Optimal Quadrature Formulas for Numerical Evaluation of Fourier Coefficients in W2(m,m−1), J. Appl. Anal. Comput. 7 (2017), 1233–1266. https://doi.org/10.11948/2017076.
  5. T. Catina¸s, G. Coman, Optimal Quadrature Formulas Based on the φ-Function Method, Stud. Univ. Babes-Bolyai Math. 51 (2006), 49–64.
  6. G. Coman, Quadrature Formulas of Sard type (Romanian), Stud. Univ. Babes-Bolyai Ser. Math.-Mech. 17 (1972), 73–77.
  7. G. Coman, Monosplines and Optimal Quadrature Formulae in Lp, Rend. Mat. 5 (1972), 567–577.
  8. G. Frobenius, On Bernoulli Numbers and Euler Polynomials, in: Sitzungsberichte der Königlich Preu ischen Akademie der Wissenschaften zu Berlin, 1910, pp. 809–847.
  9. A.O. Gelfond, Calculus of Finite Differences, Nauka, 1967.
  10. R.W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill, 1962.
  11. A.R. Hayotov, The Discrete Analogue of a Differential Operator and Its Applications, Lith. Math. J. 54 (2014), 290–307. https://doi.org/10.1007/s10986-014-9244-x.
  12. A.R. Hayotov, S. Jeon, C.O. Lee, On an Optimal Quadrature Formula for Approximation of Fourier Integrals in the Space L2(1), J. Comput. Appl. Math. 372 (2020), 112713. https://doi.org/10.1016/j.cam.2020.112713.
  13. A.R. Hayotov, S. Jeon, C.O. Lee, Kh.M. Shadimetov, Optimal Quadrature Formulas for Non-Periodic Functions in Sobolev Space and Its Application to CT Image Reconstruction, Filomat 35 (2021), 4177–4195. https://doi.org/10.2298/fil2112177h.
  14. A.R. Hayotov, S. Jeon, K.M. Shadimetov, Application of Optimal Quadrature Formulas for Reconstruction of CT Images, J. Comput. Appl. Math. 388 (2021), 113313. https://doi.org/10.1016/j.cam.2020.113313.
  15. P. Köhler, On the Weights of Sard’s Quadrature Formulas, Calcolo 25 (1988), 169–186. https://doi.org/10.1007/bf02575942.
  16. F. Lanzara, On Optimal Quadrature Formulae, J. Inequal. Appl. 5 (2000), 201–225.
  17. A.A. Maljukov, I.I. Orlov, Construction of Coefficients of the Best Quadrature Formula for the Class WL2(2)(M;ON) With Equally Spaced Nodes, In: Optimization Methods and Operations Research, Applied Mathematics, Akad. Nauk SSSR Sibirsk. Otdel. Sibirsk. Energet. Inst., Irkutsk, pp. 174-177, (1976).
  18. L.F. Meyers, A. Sard, Best Approximate Integration Formulas, J. Math. Phys. 29 (1950), 118–123.
  19. A. Sard, Best Approximate Integration Formulas, Best Approximate Formulas, Amer. J. Math. (71) 1949, 80–91. https://www.jstor.org/stable/2372095.
  20. I.J. Schoenberg, S.D. Silliman, On Semicardinal Quadrature Formulae, Math. Comput. 28 (1974), 483–497.
  21. K.M. Shadimetov, Optimal Quadrature Formulas in L2m(Ω) and L2m (R1), Dokl. Akad. Nauk UzSSR 3 (1983), 5–8.
  22. K.M. Shadimetov, The Discrete Analogue of the Differential Operator D2m/dx2m and Its Construction, Quest. Comput. Appl. Math. 1985 (1985), 22–35.
  23. K.M. Shadimetov, Construction of Weight Optimal Quadrature Formulas in the Space L2(m)(0,N), Sib. J. Comput. Math. 5 (2002), 275–293.
  24. K. M. Shadimetov, Optimal Lattice Quadrature and Cubature Formulas in Sobolev Spaces, Fan va Tekhnologiya, Tashkent, 2019.
  25. K.M. Shadimetov, A.R. Hayotov, Construction of the Discrete Analogue of the Differential Operator d2m/dx2m − d2m−2/dx2m−2 , Uzbek Math. Zh. 2 (2004), 85–95.
  26. K.M. Shadimetov, A.R. Hayotov, Optimal Quadrature Formulas in the Sense of Sard in W2(m,m−1) Space, Calcolo 51 (2013), 211–243. https://doi.org/10.1007/s10092-013-0076-6.
  27. S.L. Sobolev, Introduction to the Theory of Cubature Formulas, Nauka, 1974.
  28. S.L. Sobolev, V.L. Vaskevich, The Theory of Cubature Formulas, Siberian Division of the Russian Academy of Sciences Novosibirsk, 1996.
  29. S.L. Sobolev, On the Roots of Euler Polynomials, In: Selected Works of S.L. Sobolev, Springer, pp. 567–572, 2006.
  30. V.S. Vladimirov, V.V. Zharinov, Equations of Mathematical Physics, Fizmatlit, 2004.
  31. F.Y. Zagirova, On Construction of Optimal Quadrature Formulas With Equal Spaced Nodes, Novosibirsk, Preprint No. 25, Institute of Mathematics SD of AS of USSR, 1982.
  32. Z.Z. Zhamalov, K.M. Shadimetov, About Optimal Quadrature Formulas, Dokl. Akad. Nauk UzSSR 7 (1980), 3–5.
  33. G.V. Milovanovi´c, A.S. Cvetkovic, M.P. Stani´c, Trigonometric Orthogonal Systems and Quadrature Formulae, Comput. Math. Appl. 56 (2008), 2915–2931. https://doi.org/10.1016/j.camwa.2008.07.024.
  34. A.I. Hascelik, On Numerical Computation of Integrals With Integrands of the Form f(x)sin(w/xr) on [0, 1], J. Comput. Appl. Math. 223 (2009), 399–408. https://doi.org/10.1016/j.cam.2008.01.018.
  35. H. Xiao, Z. Gimbutas, A Numerical Algorithm for the Construction of Efficient Quadrature Rules in Two and Higher Dimensions, Comput. Math. Appl. 59 (2010), 663–676. https://doi.org/10.1016/j.camwa.2009.10.027.
  36. K.T. Shivaram, H.T. Prakasha, Numerical Integration of Highly Oscillating Functions Using Quadrature Method, Glob. J. Pure Appl. Math. 12 (2016), 2683–2690.
  37. E. Novak, S. Zhang, Optimal Quadrature Formulas for the Sobolev Space H1, J. Sci. Comput. 78 (2019), 274–289. https://doi.org/10.1007/s10915-018-0766-y.
  38. G.V. Milovanovic, Computing Integrals of Highly Oscillatory Special Functions Using Complex Integration Methods and Gaussian Quadratures, Dolom. Res. Notes Approx. 10 (2017), 79–96.
  39. M. Md. Moheuddin, M. Abdus Sattar Titu, S. Hossain, A New Analysis of Approximate Solutions for Numerical Integration Problems with Quadrature-based Methods, Pure Appl. Math. J. 9 (2020), 46–54. https://doi.org/10.11648/j.pamj.20200903.11.