Variational Iteration Method for Solving Reaction Diffusion Equation in Oscillatory Chemical Reactions
Main Article Content
Abstract
A mathematical modelling of an oscillatory chemical reactions based on diffusion is discussed. Analytical solutions have been found for the system of nonlinear diffusion equations of second order in the model. Nonlinear oscillation partial differential equations can be solved accurately and efficiently using the He's variational iteration method. He's variational iteration method can be used to obtain approximate analytical solutions to the system. Analytical approximation is compared with numerical simulation as well.
Article Details
References
- J. Torrejon, M. Riou, F.A. Araujo, et al. Neuromorphic Computing with Nanoscale Spintronic Oscillators, Nature 547 (2017), 428–431. https://doi.org/10.1038/nature23011.
- J. Zhao, X. Li, Z. Liu, Needle’s Vibration in Needle-Disk Electrospinning Process: Theoretical Model and Experimental Verification, J. Low Freq. Noise Vibr. Active Control 38 (2018), 1338–1344. https://doi.org/10.1177/1461348418817703.
- H.M. Sedighi, A. Reza, J. Zare, The Effect of Quintic Nonlinearity on the Investigation of Transversely Vibrating Buckled Euler-Bernoulli Beams, J. Theor. App. Mech. 51 (2013), 959-968.
- X.X. Li, J.H. He, Nanoscale Adhesion and Attachment Oscillation under the Geometric Potential. Part 1: The Formation Mechanism of Nanofiber Membrane in the Electrospinning, Results Phys. 12 (2019), 1405–1410. https://doi.org/10.1016/j.rinp.2019.01.043.
- C. He, J. He, H.M. Sedighi, Fangzhu: An Ancient Chinese Nanotechnology for Water Collection from Air: History, Mathematical Insight, Promises, and Challenges, Math. Meth. Appl. Sci. (2020). https://doi.org/10.1002/mma.6384.
- X. Jin, M. Liu, F. Pan, et al. Low Frequency of a Deforming Capillary Vibration, Part 1: Mathematical Model, J. Low Freq. Noise Vibr. Active Control 38 (2019), 1676–1680. https://doi.org/10.1177/1461348419856227.
- H.Y. Liu, Z. Li, Y. Yao, A Fractional Nonlinear System for Release Oscillation of Silver Ions from Hollow Fibers, J. Low Freq. Noise Vibr. Active Control 38 (2018), 88–92. https://doi.org/10.1177/1461348418814122.
- J.-H. He, D. Nurakhmetov, P. Skrzypacz, D. Wei, Dynamic Pull-in for Micro–Electromechanical Device with a Current-Carrying Conductor, J. Low Freq. Noise Vibr. Active Control 40 (2019), 1059–1066. https://doi.org/10.1177/1461348419847298.
- N. Anjum, J. He, Nonlinear Dynamic Analysis of Vibratory Behavior of a Graphene Nano/ Microelectromechanical System, Math. Meth. Appl. Sci. (2020). https://doi.org/10.1002/mma.6699.
- N. Anjum, J.H. He, Analysis of Nonlinear Vibration of Nano/Microelectromechanical System Switch Induced by Electromagnetic Force under Zero Initial Conditions, Alexandria Eng. J. 59 (2020), 4343–4352. https://doi.org/10.1016/j.aej.2020.07.039.
- R. Saravanakumar, P. Pirabaharan, M. Abukhaled, L. Rajendran, Theoretical Analysis of Voltammetry at a Rotating Disk Electrode in the Absence of Supporting Electrolyte, J. Phys. Chem. B 124 (2019), 443–450. https://doi.org/10.1021/acs.jpcb.9b07191.
- K. Saranya, V. Mohan, R. Kizek, C. Fernandez, L. Rajendran, Unprecedented Homotopy Perturbation Method for Solving Nonlinear Equations in the Enzymatic Reaction of Glucose in a Spherical Matrix, Bioprocess Biosyst. Eng. 41 (2017), 281–294. https://doi.org/10.1007/s00449-017-1865-0.
- Н. Hubal, Construction and Study of the System of Differential Equations that Describes Oscillatory Chemical Reactions Based on Diffusion, Comp.-Integr. Technol. Educ. Sci. Prod. 34 (2019), 32-36.
- D.Q. Zeng, Nonlinear Oscillator with Discontinuity by the Max–Min Approach, Chaos Solitons Fractals 42 (2009), 2885–2889. https://doi.org/10.1016/j.chaos.2009.04.029.
- L.B. Ibsen, A. Barari, A. Kimiaeifar, Analysis of Highly Nonlinear Oscillation Systems Using He’s Max-Min Method and Comparison with Homotopy Analysis and Energy Balance Methods, Sadhana 35 (2010), 433–448. https://doi.org/10.1007/s12046-010-0024-y.
- J.H. He, Max-Min Approach to Nonlinear Oscillators, Int. J. Nonlinear Sci. Numer. Simul. 9 (2008), 207-210. https://doi.org/10.1515/ijnsns.2008.9.2.207.
- S. Nourazar, A. Mirzabeigy, Approximate Solution for Nonlinear Duffing Oscillator with Damping Effect Using the Modified Differential Transform Method, Sci. Iran. 20 (2013), 364-368.
- E. Miletics, G. Molnárka, Taylor Series Method with Numerical Derivatives for Initial Value Problems, J. Comp. Meth. Sci. Eng. 4 (2004), 105–114. https://doi.org/10.3233/jcm-2004-41-213.
- M. Mallikarjuna, R. Senthamarai, An Amperometric Biosensor and Its Steady State Current in the Case of Substrate and Product Inhibition: Taylors Series Method and Adomian Decomposition Method, J. Electroanal. Chem. 946 (2023), 117699. https://doi.org/10.1016/j.jelechem.2023.117699.
- J.H. He, Comparison of Homotopy Perturbation Method and Homotopy Analysis Method, Appl. Math. Comp. 156 (2004), 527–539. https://doi.org/10.1016/j.amc.2003.08.008.
- R. Saravanakumar, P. Pirabaharan, L. Rajendran, The Theory of Steady State Current for Chronoamperometric and Cyclic Voltammetry on Rotating Disk Electrodes for EC’ and ECE Reactions, Electrochim. Acta 313 (2019), 441–456. https://doi.org/10.1016/j.electacta.2019.05.033.
- M. Abukhaled, S.A. Khuri, A Semi-Analytical Solution of Amperometric Enzymatic Reactions Based on Green’s Functions and Fixed Point Iterative Schemes, J. Electroanal. Chem. 792 (2017), 66–71. https://doi.org/10.1016/j.jelechem.2017.03.015.
- M. Abukhaled, Green’s Function Iterative Approach for Solving Strongly Nonlinear Oscillators, J. Comp. Nonlinear Dyn. 12 (2017), 051021. https://doi.org/10.1115/1.4036813.
- A.A. Adeniji, O.A. Mogbojuri, M.C. Kekana, S.E. Fadugba, Numerical Solution of Rotavirus Model Using Runge-Kutta-Fehlberg Method, Differential Transform Method and Laplace Adomian Decomposition Method, Alexandria Eng. J. 82 (2023), 323–329. https://doi.org/10.1016/j.aej.2023.10.001.
- P. Jeyabarathi, L. Rajendran, M. Abukhaled, M.E.G. Lyons, M. Kannan, Steady-State Catalytic Current of Bioelectrocatalysis Using Akbari-Ganji’s Method, Int. J. Electrochem. Sci. 17 (2022) 22093. https://doi.org/10.20964/2022.09.37.
- J.H. He, X.-H. Wu, Variational Iteration Method: New Development and Applications, Comp. Math. Appl. 54 (2007), 881–894. https://doi.org/10.1016/j.camwa.2006.12.083.
- S. Rehman, A. Hussain, J.U. Rahman, N. Anjum, T. Munir, Modified Laplace Based Variational Iteration Method for the Mechanical Vibrations and its Applications, Acta Mech. Autom. 16 (2022), 98–102. https://doi.org/10.2478/ama-2022-0012.
- Z. Odibat, S. Momani, The Variational Iteration Method: An Efficient Scheme for Handling Fractional Partial Differential Equations in Fluid Mechanics, Comp. Math. Appl. 58 (2009), 2199–2208. https://doi.org/10.1016/j.camwa.2009.03.009.
- M. Shirazian, A New Acceleration of Variational Iteration Method for Initial Value Problems, Math. Comp. Simul. 214 (2023), 246–259. https://doi.org/10.1016/j.matcom.2023.07.002.
- S.S. Ganji, D.D. Ganji, A.G. Davodi, S. Karimpour, Analytical Solution to Nonlinear Oscillation System of the Motion of a Rigid Rod Rocking Back Using Max–Min Approach, Appl. Math. Model. 34 (2010), 2676–2684. https://doi.org/10.1016/j.apm.2009.12.002.
- B.A. Khudayarov, F.Zh. Turaev, Mathematical Simulation of Nonlinear Oscillations of Viscoelastic Pipelines Conveying Fluid, Appl. Math. Model. 66 (2019), 662–679. https://doi.org/10.1016/j.apm.2018.10.008.
- B.A. Khudayarov, F.Zh. Turaev, Mathematical Simulation of Nonlinear Oscillations of Viscoelastic Pipelines Conveying Fluid, Appl. Math. Model. 66 (2019), 662–679. https://doi.org/10.1016/j.apm.2018.10.008.
- M.A. Abdou, A.A. Soliman, Variational Iteration Method for Solving Burger’s and Coupled Burger’s Equations, J. Comp. Appl. Math. 181 (2005), 245–251. https://doi.org/10.1016/j.cam.2004.11.032.
- M. Matinfar, S. JafarNodeh, Application of He's Variational Iteration Method for solving the Equation Governing the Unsteady Flow of a Polytropic Gas, J. Math. Ext. 3 (2009), 61-67.
- J.H. He, Variational Iteration Method – A Kind of Non-Linear Analytical Technique: Some Examples, Int. J. Non-Linear Mech. 34 (1999), 699–708. https://doi.org/10.1016/s0020-7462(98)00048-1.
- J.-H. He, Variational Iteration Method for Autonomous Ordinary Differential Systems, Appl. Math. Comp. 114 (2000), 115–123. https://doi.org/10.1016/s0096-3003(99)00104-6.