Structured Linear Systems and Their Iterative Solutions Through Fuzzy Poisson's Equation

Main Article Content

I. K. Youssef, Hewayda M. S. Lotfy

Abstract

A realistic version of the modified successive overrelaxation (MSOR) with four relaxation parameters is introduced (MMSOR) with application to a representative matrix partition. The one-dimensional Poisson’s equation with fuzzy boundary values is the standard source problem for our treatment (it is sufficient to introduce all the concepts in a simple form). The finite difference method with RedBlack (RB)-Labelling of the grid points is used to introduce a fuzzy algebraic system with characterized fuzzy weak solutions (corresponding to black grid points). We introduce the algorithmic structure and the implementation of MMSOR on the de-fuzzified linear system. The choice of relaxation parameters is based on the minimum Spectral Radius (SR) of the iteration matrices. A comparison with SOR (one relaxation parameter) and MSOR (two relaxation parameters) is considered, and a relation between the three methods is revealed. Assuming the same accuracy, the experimental results showed that the MMSOR runs faster than the SOR and the MSOR methods.

Article Details

References

  1. M. Friedman, M. Ming, A. Kandel, Fuzzy Linear Systems, Fuzzy Sets Syst. 96 (1998), 201–209. https://doi.org/10.1016/s0165-0114(96)00270-9.
  2. E.J. Hong, A. Saudi, J. Sulaiman, Numerical Assessment for Poisson Image Blending Problem Using MSOR Iteration via Five-Point Laplacian Operator, J. Phys.: Conf. Ser. 890 (2017), 012010. https://doi.org/10.1088/1742-6596/890/1/012010.
  3. M. Mazandarani, L. Xiu, A Review on Fuzzy Differential Equations, IEEE Access 9 (2021), 62195–62211. https://doi.org/10.1109/access.2021.3074245.
  4. T. Allahviranloo, A. Hashemi, The Embedding Method to Obtain the Solution of Fuzzy Linear Systems, Int. J. Ind. Math. 6 (2014), 229-233.
  5. T. Allahviranloo, Successive Over Relaxation Iterative Method for Fuzzy System of Linear Equations, Appl. Math. Comput. 162 (2005), 189–196. https://doi.org/10.1016/j.amc.2003.12.085.
  6. Y. Feng, An Iterative Method for Fuzzy Linear Systems, in: 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, IEEE, Jinan Shandong, China, 2008: pp. 565–569. https://doi.org/10.1109/FSKD.2008.92.
  7. J.F. Yin, K. Wang, Splitting Iterative Methods for Fuzzy System of Linear Equations, Comput. Math. Model. 20 (2009), 326–335. https://doi.org/10.1007/s10598-009-9039-9.
  8. F. Abbasi, T. Allahviranloo, Solving Fully Fuzzy Linear System: A New Solution Concept, Inf. Sci. 589 (2022), 608–635. https://doi.org/10.1016/j.ins.2022.01.004.
  9. R. Goetschel Jr., W. Voxman, Elementary Fuzzy Calculus, Fuzzy Sets Syst. 18 (1986), 31–43. https://doi.org/10.1016/0165-0114(86)90026-6.
  10. T. Allahviranloo, Numerical Methods for Fuzzy System of Linear Equations, Appl. Math. Comput. 155 (2004), 493–502. https://doi.org/10.1016/s0096-3003(03)00793-8.
  11. M. Dehghan, B. Hashemi, Iterative Solution of Fuzzy Linear Systems, Appl. Math. Comput. 175 (2006), 645–674. https://doi.org/10.1016/j.amc.2005.07.033.
  12. N. Gasilov, Ş.E. Amrahov, A.G. Fatullayev, Solution of Linear Differential Equations with Fuzzy Boundary Values, Fuzzy Sets Syst. 257 (2014), 169–183. https://doi.org/10.1016/j.fss.2013.08.008.
  13. H.M.S. Lotfy, A.A. Taha, I.K. Youssef, Fuzzy Linear Systems via Boundary Value Problem, Soft Comput. 23 (2018), 9647–9655. https://doi.org/10.1007/s00500-018-3529-7.
  14. I.K. Youssef, A.A. Taha, On the Modified Successive Overrelaxation Method, Appl. Math. Comput. 219 (2013), 4601–4613. https://doi.org/10.1016/j.amc.2012.10.071.
  15. D.R. Kincaid, D.M. Young, The Modified Successive Overrelaxation Method with Fixed Parameters, Math. Comput. 26 (1972), 705–717. https://doi.org/10.1090/s0025-5718-1972-0331746-2.
  16. S.A. Meligy, I.K. Youssef, A Refinement of the KSOR Iterative Method, Int. J. Math. Comput. Sci. 17 (2022), 1193-11199.
  17. S.A. Meligy, I.K. Youssef, Relaxation Parameters and Composite Refinement Techniques, Results Appl. Math. 15 (2022), 100282. https://doi.org/10.1016/j.rinam.2022.100282.