Structured Linear Systems and Their Iterative Solutions Through Fuzzy Poisson's Equation
Main Article Content
Abstract
A realistic version of the modified successive overrelaxation (MSOR) with four relaxation parameters is introduced (MMSOR) with application to a representative matrix partition. The one-dimensional Poisson’s equation with fuzzy boundary values is the standard source problem for our treatment (it is sufficient to introduce all the concepts in a simple form). The finite difference method with RedBlack (RB)-Labelling of the grid points is used to introduce a fuzzy algebraic system with characterized fuzzy weak solutions (corresponding to black grid points). We introduce the algorithmic structure and the implementation of MMSOR on the de-fuzzified linear system. The choice of relaxation parameters is based on the minimum Spectral Radius (SR) of the iteration matrices. A comparison with SOR (one relaxation parameter) and MSOR (two relaxation parameters) is considered, and a relation between the three methods is revealed. Assuming the same accuracy, the experimental results showed that the MMSOR runs faster than the SOR and the MSOR methods.
Article Details
References
- M. Friedman, M. Ming, A. Kandel, Fuzzy Linear Systems, Fuzzy Sets Syst. 96 (1998), 201–209. https://doi.org/10.1016/s0165-0114(96)00270-9.
- E.J. Hong, A. Saudi, J. Sulaiman, Numerical Assessment for Poisson Image Blending Problem Using MSOR Iteration via Five-Point Laplacian Operator, J. Phys.: Conf. Ser. 890 (2017), 012010. https://doi.org/10.1088/1742-6596/890/1/012010.
- M. Mazandarani, L. Xiu, A Review on Fuzzy Differential Equations, IEEE Access 9 (2021), 62195–62211. https://doi.org/10.1109/access.2021.3074245.
- T. Allahviranloo, A. Hashemi, The Embedding Method to Obtain the Solution of Fuzzy Linear Systems, Int. J. Ind. Math. 6 (2014), 229-233.
- T. Allahviranloo, Successive Over Relaxation Iterative Method for Fuzzy System of Linear Equations, Appl. Math. Comput. 162 (2005), 189–196. https://doi.org/10.1016/j.amc.2003.12.085.
- Y. Feng, An Iterative Method for Fuzzy Linear Systems, in: 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, IEEE, Jinan Shandong, China, 2008: pp. 565–569. https://doi.org/10.1109/FSKD.2008.92.
- J.F. Yin, K. Wang, Splitting Iterative Methods for Fuzzy System of Linear Equations, Comput. Math. Model. 20 (2009), 326–335. https://doi.org/10.1007/s10598-009-9039-9.
- F. Abbasi, T. Allahviranloo, Solving Fully Fuzzy Linear System: A New Solution Concept, Inf. Sci. 589 (2022), 608–635. https://doi.org/10.1016/j.ins.2022.01.004.
- R. Goetschel Jr., W. Voxman, Elementary Fuzzy Calculus, Fuzzy Sets Syst. 18 (1986), 31–43. https://doi.org/10.1016/0165-0114(86)90026-6.
- T. Allahviranloo, Numerical Methods for Fuzzy System of Linear Equations, Appl. Math. Comput. 155 (2004), 493–502. https://doi.org/10.1016/s0096-3003(03)00793-8.
- M. Dehghan, B. Hashemi, Iterative Solution of Fuzzy Linear Systems, Appl. Math. Comput. 175 (2006), 645–674. https://doi.org/10.1016/j.amc.2005.07.033.
- N. Gasilov, Ş.E. Amrahov, A.G. Fatullayev, Solution of Linear Differential Equations with Fuzzy Boundary Values, Fuzzy Sets Syst. 257 (2014), 169–183. https://doi.org/10.1016/j.fss.2013.08.008.
- H.M.S. Lotfy, A.A. Taha, I.K. Youssef, Fuzzy Linear Systems via Boundary Value Problem, Soft Comput. 23 (2018), 9647–9655. https://doi.org/10.1007/s00500-018-3529-7.
- I.K. Youssef, A.A. Taha, On the Modified Successive Overrelaxation Method, Appl. Math. Comput. 219 (2013), 4601–4613. https://doi.org/10.1016/j.amc.2012.10.071.
- D.R. Kincaid, D.M. Young, The Modified Successive Overrelaxation Method with Fixed Parameters, Math. Comput. 26 (1972), 705–717. https://doi.org/10.1090/s0025-5718-1972-0331746-2.
- S.A. Meligy, I.K. Youssef, A Refinement of the KSOR Iterative Method, Int. J. Math. Comput. Sci. 17 (2022), 1193-11199.
- S.A. Meligy, I.K. Youssef, Relaxation Parameters and Composite Refinement Techniques, Results Appl. Math. 15 (2022), 100282. https://doi.org/10.1016/j.rinam.2022.100282.