On Pair of Compatible Mappings and Coincidence Point Theorems in b-Metric Spaces
Main Article Content
Abstract
The main goal of this study is to give two different results for a couple of compatible self-mappings. The first result provides the necessary condition for the existence of a coincidence point for a pair of mappings that are partially weakly increasing in partially ordered b-metric spaces. Additionally, we establish a fixed point result in order to guarantee the uniqueness of common fixed points for pair of maps satisfying the b-(E.A.) Property. Our findings extends and improve well established results of existing literature. In order highlight the distinctiveness of our main theorems, two discrete examples with Tabular and Graphical representations are also presented.
Article Details
References
- M. Frechet, Sur Quelques Points du Calcul Fonctionnel, Rend. Circ. Mat. Palermo 22 (1904), 1–72.
- S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
- R. Kannan, Some Results on Fixed Points, Bull. Calcutta Math. Soc. 60 (1968), 71–76. https://cir.nii.ac.jp/crid/1572543024587220992.
- G. Jungck, Commuting Mappings and Fixed Points, Amer. Math. Mon. 83 (1976), 261–263. https://doi.org/10.1080/00029890.1976.11994093.
- G. Jungck, Compatible Mappings and Common Fixed Points, Int. J. Math. Math. Sci. 9 (1986), 771–779. https://doi.org/10.1155/s0161171286000935.
- G. Jungck, Common Fixed Points for Noncontinuous Non-Self Maps on Non-Metric Spaces, Far East J. Math. Sci. 4 (1996), 199–215.
- S. Sessa, On a Weak Commutativity Condition of Mappings in Fixed Point Considerations, Publ. lnst. Math. 32 (1982), 149–153.
- R.P. Pant, Common Fixed Points of Noncommuting Mappings, J. Math. Anal. Appl. 188 (1994), 436–440. https://doi.org/10.1006/jmaa.1994.1437.
- S. Kumar, Fixed Points and Continuity for a Pair of Contractive Maps with Application to Nonlinear Volterra Integral Equations, J. Function Spaces 2021 (2021), 9982217. https://doi.org/10.1155/2021/9982217.
- L. Wangwe, S. Kumar, A Common Fixed Point Theorem for Generalised F-Kannan Mapping in Metric Space with Applications, Abstr. Appl. Anal. 2021 (2021), 6619877. https://doi.org/10.1155/2021/6619877.
- L. Wangwe, S. Kumar, Fixed Point Theorems for Multi-Valued α-F-Contractions in Partial Metric Spaces With an Application, Results Nonlinear Anal. 4 (2021), 130–148.
- J.R. Morales, E.M. Rojas, R.K. Bisht, Common Fixed Points for Pairs of Mappings with Variable Contractive Parameters, Abstr. Appl. Anal. 2014 (2014), 209234. https://doi.org/10.1155/2014/209234.
- J.R. Morales, E.M. Rojas, Contractive Mappings of Rational Type Controlled by Minimal Requirements Functions, Afr. Mat. 27 (2015), 65–77. https://doi.org/10.1007/s13370-015-0319-6.
- N. Bourbaki, Topologie Generale, Herman, Paris, 1974.
- I.A. Bakhtin, The Contraction Mapping Principle in Almost Metric Spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk 30 (1989), 26–37.
- S. Czerwik, Contraction Mappings in b-Metric Spaces, Acta Math. Inf. Univ. Ostrav. 1 (1993), 5–11. http://dml.cz/dmlcz/120469.
- S. Czerwik, Nonlinear Set-Valued Contraction Mappings in b-metric Spaces, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 263–276. https://cir.nii.ac.jp/crid/1571980075066433280.
- S. Beniwal, N. Mani, R. Shukla, A. Sharma, Fixed Point Results for Compatible Mappings in Extended Parametric Sb -Metric Spaces, Mathematics 12 (2024), 1460. https://doi.org/10.3390/math12101460.
- N. Mani, A. Sharma, R. Shukla, Fixed Point Results via Real-Valued Function Satisfying Integral Type Rational Contraction, Abstr. Appl. Anal. 2023 (2023), 2592507. https://doi.org/10.1155/2023/2592507.
- N. Mani, S. Beniwal, R. Shukla, M. Pingale, Fixed Point Theory in Extended Parametric Sb -Metric Spaces and Its Applications, Symmetry 15 (2023), 2136. https://doi.org/10.3390/sym15122136.
- V. Ozturk, D. Turkoglu, Common Fixed Point Theorems for Mappings Satisfying (E.A)-Property in b-Metric Spaces, J. Nonlinear Sci. Appl. 08 (2015), 1127–1133. https://doi.org/10.22436/jnsa.008.06.21.
- V. Ozturk, D. Turkoglu, Fixed Points for Generalized α-ψ-Contractions in b-Metric Spaces, J. Nonlinear Convex Anal. 16 (2015), 2059–2066.
- A.C.M. Ran, M.C.B. Reurings, A Fixed Point Theorem in Partially Ordered Sets and Some Applications to Matrix Equations, Proc. Amer. Math. Soc. 132 (2003), 1435–1443. https://doi.org/10.1090/s0002-9939-03-07220-4.
- J.J. Nieto, R. Rodríguez-López, Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations, Order 22 (2005), 223–239. https://doi.org/10.1007/s11083-005-9018-5.
- J.J. Nieto, R. Rodríguez-López, Existence and Uniqueness of Fixed Point in Partially Ordered Sets and Applications to Ordinary Differential Equations, Acta. Math. Sin.-English Ser. 23 (2006), 2205–2212. https://doi.org/10.1007/s10114-005-0769-0.
- V. Gupta, Ramandeep, N. Mani, A.K. Tripathi, Some Fixed Point Result Involving Generalized Altering Distance Function, Procedia Comp. Sci. 79 (2016), 112–117. https://doi.org/10.1016/j.procs.2016.03.015.
- V. Gupta, W. Shatanawi, N. Mani, Fixed Point Theorems for (ψ, β)-Geraghty Contraction Type Maps in Ordered Metric Spaces and Some Applications to Integral and Ordinary Differential Equations, J. Fixed Point Theory Appl. 19 (2016), 1251–1267. https://doi.org/10.1007/s11784-016-0303-2.
- N. Mani, Generalized C ψ β -Rational Contraction and Fixed Point Theorem With Application to Second Order Deferential Equation, Math. Morav. 22 (2018), 43–54. https://doi.org/10.5937/matmor1801043m.
- V. Gupta, G. Jungck, N. Mani, Some Novel Fixed Point Theorems in Partially Ordered Metric Spaces, AIMS Math. 5 (2020), 4444–4452. https://doi.org/10.3934/math.2020284.
- M. Aamri, D. El Moutawakil, Some New Common Fixed Point Theorems Under Strict Contractive Conditions, J. Math. Anal. Appl. 270 (2002), 181–188. https://doi.org/10.1016/s0022-247x(02)00059-8.
- M.S. Khan, M. Swaleh, S. Sessa, Fixed Point Theorems by Altering Distances Between the Points, Bull. Austral. Math. Soc. 30 (1984), 1–9. https://doi.org/10.1017/s0004972700001659.