The Convex Sets in Banach Spaces and Polynomial Approximation

Main Article Content

Ashraf S. ELshreif, Habeeb Ibrahim, Mohammed E. Dafaalla, Osman Abdalla Adam Osman

Abstract

A Banach space A, an open subset V of A, and an open subset U of A' are considered. Our definition introduces novel categories of topological algebras of holomorphic functions on A. We demonstrate the equality of the two sets of holomorphic functions (Hwv(V)) and (Hw*vk(U)) under specific assumptions. We demonstrated that norm-dense Pgi(A) is found in Pw(A) and norm-dense Pgi*(A') is found in Pw*(A'). Additionally, we demonstrated that Pgi(A) is τk-dense in Hwvk(V) and Pgi*(A') is τk*-dense in Hw*vk(U) for a Banach space with a decreasing Schauder basis A, a polynomially convex weakly open subset V of A, and a polynomially convex weak-star open subset U of A.

Article Details

References

  1. R.M. Aron, B.J. Cole, T.W. Gamelin, Weak-Star Continuous Analytic Functions, Canad. J. Math. 47 (1995), 673–683. https://doi.org/10.4153/cjm-1995-035-1.
  2. R.M. Aron, C. Hervés, M. Valdivia, Weakly Continuous Mappings on Banach Spaces, J. Funct. Anal. 52 (1983), 189–204. https://doi.org/10.1016/0022-1236(83)90081-2.
  3. R.M. Aron, J.B. Prolla, Polynomial Approximation of Differentiable Functions on Banach Spaces, J. Reine Angew. Math. 313 (1980), 195–216. https://doi.org/10.1515/crll.1980.313.195.
  4. R.M. Aron, M.P. Rueda, Homomorphisms on Spaces of Weakly Continuous Holomorphic Functions, Arch. Math. 73 (1999), 430–438. https://doi.org/10.1007/s000130050420.
  5. S. Banach, Théorie des Opérations Linéaires, Chelsea Pub, Warsaw, 1932.
  6. P.A. Burlandy, L.A. Moraes, The Spectrum of an Algebra of Weakly Continuous Holomorphic Mappings, Indag. Math. 11 (2000), 525–532. https://doi.org/10.1016/s0019-3577(00)80021-x.
  7. D. Carando, D. García, M. Maestre, Homomorphisms and Composition Operators on Algebras of Analytic Functions of Bounded Type, Adv. Math. 197 (2005), 607–629. https://doi.org/10.1016/j.aim.2004.10.018.
  8. S. Dineen, Complex Analysis in Infinite Dimensional Spaces, Springer, 1999.
  9. D. Garcia, M.L. Lourenço, L.A. Moraes, O.W. Paques, The Spectra of Some Algebras of Analytic Mappings, Indag. Math. 10 (1999), 393–406. https://doi.org/10.1016/s0019-3577(99)80031-7.
  10. J. Mujica, Complex Analysis in Banach Spaces, North-Holland Math. Stud., vol. 120, Elsevier, Amsterdam, 1986.
  11. J. Mujica, Ideals of Holomorphic Functions on Tsirelson’s Space, Arch. Math. 76 (2001), 292–298. https://doi.org/10.1007/s000130050571.
  12. M.H. Stone, Applications of the Theory of Boolean Rings to General Topology, Trans. Amer. Math. Soc. 41 (1937), 375-481.
  13. B.S. Tsirel'son, Not every Banach Space Contains an Imbedding of l_p or c_0, Funct. Anal. Appl. 8 (1974), 138–141. https://doi.org/10.1007/BF01078599.
  14. D.M. Vieira, Theorems of Banach-Stone Type for Algebras of Holomorphic Functions on Infinite Dimensional Spaces, Math. Proc. R. Irish Acad. 106A (2006), 97–113. https://doi.org/10.1353/mpr.2006.0019.
  15. D.M. Vieira, Spectra of Algebras of Holomorphic Functions of Bounded Type, Indag. Math. 18 (2007), 269–279. https://doi.org/10.1016/s0019-3577(07)80022-x.
  16. D.M. Vieira, Polynomial Approximation in Banach Spaces, J. Math. Anal. Appl. 328 (2007), 984–994. https://doi.org/10.1016/j.jmaa.2006.05.076.