Characterization of Different Prime Bi-Ideals and Its Generalization of Semirings

Main Article Content

M. Palanikumar, G. Mohanraj, Aiyared Iampan

Abstract

We introduce three sequences of different prime bi-ideals of semirings such that 11(12,13)-prime bi-ideal, 21(22)-prime bi-ideal and 31(32,33)-prime bi-ideal using bi-ideals. In this article, we characterize the different prime bi-ideals. We discuss that the 11-prime bi-ideal implies the 12-prime bi-ideal implies the 13-prime bi-ideal, but the reverse implication does not hold with the help of numerical examples. We investigate if a 21-prime bi-ideal implies a 22-prime bi-ideal, but the converse need not be true with the help of numerical examples. If G is any bi-ideal of a semiring S, then K(G) = {x ∈ G | x + y = z for some y, z ∈ G} is the unique largest k-bi-ideal contained in G. If Θ is a 21-prime bi-ideal of S, then Θ is a one-sided ideal of S. It is shown that there is a relation between G and K(G), in which G is a 13-prime bi-ideal. In our communication, 11-prime bi-ideal implies 21-prime bi-ideal. An interaction between a 31-prime bi-ideal implies a 32-prime bi-ideal, and a 32-prime bi-ideal implies a 33-prime bi-ideal; however, the reverse implication is invalid by some examples. Every 13-prime bi-ideal is a 22-prime bi-ideal, but the converse need not be true with the help of examples.

Article Details

References

  1. F.E. Alarcón, D. Polkowska, Fully Prime Semirings, Kyungpook Math. J. 40 (2000), 239–245.
  2. A.K. Bhuniya, K. Jana, Bi-Ideals in k-Regular and Intra k-Regular Semirings, Discuss. Math. Gen. Algebra Appl. 31 (2011), 5–25.
  3. M. Henriksen, Ideals in Semirings With Commutative Addition, Notices Amer. Math. Soc. 6 (1958), 321.
  4. A. Iampan, Characterizing Ordered Quasi-Ideals of Ordered Γ-Semigroups, Kragujevac J. Math. 35 (2011), 13–23.
  5. A. Iampan, Characterizing Ordered Bi-Ideals in Ordered Γ-Semigroups, Iran. J. Math. Sci. Inf. 4 (2009), 17–25. https://doi.org/10.7508/ijmsi.2009.01.002.
  6. A. Iampan, M. Siripitukdet, On Minimal and Maximal Ordered Left Ideals in PO-Γ-Semigroups, Thai J. Math. 2 (2004), 275–282.
  7. Y. Kemprasit, Quasi-Ideals and Bi-Ideals in Semigroups and Rings, In: Proceedings of the International Conference on Algebra and Its Applications, Bangkok, Thailand, pp. 30–46, 2002.
  8. G. Mohanraj, M. Palanikumar, Characterization of Various k-Regular in b-Semirings, AIP Conf. Proc. 2112 (2019), 020021. https://doi.org/10.1063/1.5112206.
  9. G. Mohanraj, M. Palanikumar, On Prime k-Ideals in Semirings, Nonlinear Stud. 27 (2021), 769–774.
  10. G. Mohanraj, M. Palanikumar, On Various Prime and Semiprime Bi-Ideals of Rings, Nonlinear Stud. 27 (2021), 811–815.
  11. M. Munir, On M-Bi-Ideals in Semigroups, Bull. Int. Math. Virtual Inst. 8 (2018), 461–467.
  12. M. Palanikumar, C. Jana, O. Al-Shanqiti, M. Pal, A Novel Method for Generating the M-Tri-Basis of an Ordered Γ-Semigroup, Mathematics 11 (2023), 893. https://doi.org/10.3390/math11040893.
  13. M. Palanikumar, O. Al-Shanqiti, C. Jana, M. Pal, Novelty for Different Prime Partial Bi-Ideals in Non-Commutative Partial Rings and Its Extension, Mathematics 11 (2023), 1309. https://doi.org/10.3390/math11061309.
  14. M. Palanikumar, K. Arulmozhi, On Various Almost Ideals of Semirings, Ann. Commun. Math. 4 (2021), 17–25.
  15. M. Palanikumar, K. Arulmozhi, On Various Tri-Ideals in Ternary Semirings, Bull. Int. Math. Virtual Inst. 11 (2021), 79–90.
  16. M. Palanikumar, K. Arulmozhi, C. Jana, M. Pal, K.P. Shum, New Approach Towards Different Bi-Base of Ordered b-Semiring, Asian-European J. Math. 16 (2022), 2350019. https://doi.org/10.1142/s1793557123500195.
  17. M. Palanikumar, A. Iampan, L.J. Manavalan, M-Bi-Base Generator of Ordered Γ-Semigroups, ICIC Express Lett. Part B Appl. 13 (2022), 795–802. https://doi.org/10.24507/icicelb.13.08.795.
  18. M. Palanikumar, G. Mohanraj, On Various Quasi-Ideals in b-Semirings, Malaya J. Math. 8 (2020), 20–27. https://doi.org/10.26637/MJM0801/0004.
  19. M.K. Sen, M.R. Adhikari, On k-Ideals of Semirings, Int. J. Math. Math. Sciences 15 (1992), 347–350. https://doi.org/10.1155/s0161171292000437.
  20. M.K. Sen, M.R. Adhikari, On Maximal k-Ideals of Semirings, Proc. Amer. Math. Soc. 118 (1993), 699–702. https://doi.org/10.2307/2160106.