Fixed Point Methodologies for ψ-Contraction Mappings in Cone Metric Spaces over Banach Algebra with Supportive Applications

Main Article Content

Rashwan A. Rashwan, Hasanen A. Hammad, Mohamed Gamal, Saleh Omran, Manuel De la Sen

Abstract

The explicit aim of this manuscript is to obtain fixed point consequences under novel ψ-contraction mappings in a complete cone metric space over Banach algebra. We connect and relate different fixed point theorems by using the idea of ψ-contraction mappings, providing a thorough viewpoint that deepens our comprehension of this topic. Our theorems generalize and unify many results in the scientific literature. These prospective extensions offer intriguing research directions and have the potential to further advance the study of fixed point theory. The investigation of examples plays an extremely crucial role in verifying the effectiveness and validity of our theoretical results. Moreover, to support the theoretical results, some examples are investigated to emphasize these results. Ultimately, the existence and uniqueness of the solution to the Urysohn integral and nonlinear fractional differential equation are cooperated as applications to provide an authoritative basis for dealing with actual problems that include these equations.

Article Details

References

  1. S. Banach, Sur les Opérations dans les Ensembles Abstraits et leur Application aux Équations Intégrales, Fund. Math. 3 (1922), 133–181. https://eudml.org/doc/213289.
  2. A. Amini-Harandi, H. Emami, A Fixed Point Theorem for Contraction Type Maps in Partially Ordered Metric Spaces and Application to Ordinary Differential Equations, Nonlinear Anal.: Theory Meth. Appl. 72 (2010), 2238– 2242. https://doi.org/10.1016/j.na.2009.10.023.
  3. E. Karapınar, T. Abdeljawad, F. Jarad, Applying New Fixed Point Theorems on Fractional and Ordinary Differential Equations, Adv. Diff. Equ. 2019 (2019), 421. https://doi.org/10.1186/s13662-019-2354-3.
  4. V. Gupta, W. Shatanawi and N. Mani, Fixed Point Theorems for (ψ, β)–Geraghty Contraction Type Maps in Ordered Metric Spaces and Some Applications to Integral and Ordinary Differential Equations, J. Fixed Point Theory Appl. 19 (2016), 1251–1267. https://doi.org/10.1007/s11784-016-0303-2.
  5. H.V. Long, N.T.K. Son, R. Rodríguez-López, Some Generalizations of Fixed Point Theorems in Partially Ordered Metric Spaces and Applications to Partial Differential Equations with Uncertainty, Vietnam J. Math. 46 (2017), 531–555. https://doi.org/10.1007/s10013-017-0254-y.
  6. K.B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
  7. H. Beyer, S. Kempfle, Definition of Physically Consistent Damping Laws with Fractional Derivatives, Z. Angew. Math. Mech. 75 (1995), 623–635. https://doi.org/10.1002/zamm.19950750820.
  8. M. Caputo, Linear Models of Dissipation whose Q is almost Frequency Independent–II, Geophys. J. Int. 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246x.1967.tb02303.x.
  9. J.H. He, Some Applications of Nonlinear Fractional Differential Equations and Their Approximations, Bull. Sci. Technol. 15 (1999), 86–90.
  10. A.M. Lopes, J.A. Tenreiro Machado, C.M.A. Pinto, A.M.S.F. Galhano, Fractional Dynamics and MDS Visualization of Earthquake Phenomena, Comp. Math. Appl. 66 (2013), 647–658. https://doi.org/10.1016/j.camwa.2013.02.003.
  11. M.R. Ubriaco, Entropies Based on Fractional Calculus, Phys. Lett. A 373 (2009), 2516–2519. https://doi.org/10.1016/j.physleta.2009.05.026.
  12. J. Prehl, F. Boldt, C. Essex, K. Hoffmann, Time Evolution of Relative Entropies for Anomalous Diffusion, Entropy 15 (2013), 2989–3006. https://doi.org/10.3390/e15082989.
  13. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, Inc., New York, 1993.
  14. R. Alyusof, S. Alyusof, N. Iqbal, M.A. Arefin, Novel Evaluation of the Fractional Acoustic Wave Model with the Exponential-Decay Kernel, Complexity 2022 (2022), 9712388. https://doi.org/10.1155/2022/9712388.
  15. J.A. Tenreiro Machado, Entropy Analysis of Integer and Fractional Dynamical Systems, Nonlinear Dyn. 62 (2010), 371–378. https://doi.org/10.1007/s11071-010-9724-4.
  16. J.A.T. Machado, Optimal Tuning of Fractional Controllers Using Genetic Algorithms, Nonlinear Dyn. 62 (2010), 447–452. https://doi.org/10.1007/s11071-010-9731-5.
  17. J. Prehl, C. Essex, K.H. Hoffmann, Tsallis Relative Entropy and Anomalous Diffusion, Entropy 14 (2012), 701–716. https://doi.org/10.3390/e14040701.
  18. L. Sommacal, P. Melchior, A. Dossat, J. Petit, J.M. Cabelguen, A. Oustaloup, A.J. Ijspeert, Improvement of the Muscle Fractional Multimodel for Low-Rate Stimulation, Biomed. Signal Process. Control 2 (2007), 226–233. https://doi.org/10.1016/j.bspc.2007.07.013.
  19. N. Iqbal, T. Botmart, W.W. Mohammed, A. Ali, Numerical Investigation of Fractional-Order Kersten-Krasil’shchik Coupled KdV–mKdV System with Atangana-Baleanu Derivative, Adv. Cont. Discr. Mod. 2022 (2022), 37. https://doi.org/10.1186/s13662-022-03709-5.
  20. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  21. H. Yasmin, N. Iqbal, A Comparative Study of the Fractional-Order Nonlinear System of Physical Models via Analytical Methods, Math. Probl. Eng. 2022 (2022), 7488996. https://doi.org/10.1155/2022/7488996.
  22. H.A. Hammad, M. De la Sen, Tripled Fixed Point Techniques for Solving System of Tripled-Fractional Differential Equations, AIMS Math. 6 (2020), 2330–2343. https://doi.org/10.3934/math.2021141.
  23. R.A. Rashwan, H.A. Hammad, M.G. Mahmoud, Common Fixed Point Results for Weakly Compatible Mappings Under Implicit Relations in Complex Valued G-Metric Spaces, Inf. Sci. Lett. 8 (2019), 111–119. https://doi.org/10.18576/isl/080305.
  24. H.A. Hammad, H. Aydi, H. I¸sık, M. De la Sen, Existence and Stability Results for a Coupled System of Impulsive Fractional Differential Equations With Hadamard Fractional Derivatives, AIMS Math. 8 (2023), 6913–6941. https://doi.org/10.3934/math.2023350.
  25. H.A. Hammad, M. De la Sen, Analytical Solution of Urysohn Integral Equations by Fixed Point Technique in Complex Valued Metric Spaces, Mathematics 7 (2019), 852. https://doi.org/10.3390/math7090852.
  26. H.A. Hammad, R.A. Rashwan, A. Nafea, M.E. Samei, S. Noeiaghdam, Stability Analysis for a Tripled System of Fractional Pantograph Differential Equations With Nonlocal Conditions, J. Vib. Control 30 (2023), 632–647. https://doi.org/10.1177/10775463221149232.
  27. H.A. Hammad, H. Aydi, M. De la Sen, Generalized Dynamic Process for an Extended Multivalued F−Contraction in Metric-Like Spaces With Applications, Alex. Eng. J. 59 (2020), 3817–3825. https://doi.org/10.1016/j.aej.2020.06.037.
  28. H.A. Hammad, M.-F. Bota, L. Guran, Wardowski’s Contraction and Fixed Point Technique for Solving Systems of Functional and Integral Equations, J. Funct. Spaces 2021 (2021), 7017046. https://doi.org/10.1155/2021/7017046.
  29. L.G. Huang, X. Zhang, Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings, J. Math. Anal. Appl. 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087.
  30. D. Turkoglu, M. Abuloha, Cone Metric Spaces and Fixed Point Theorems in Diametrically Contractive Mappings, Acta. Math. Sin.-English Ser. 26 (2010), 489–496. https://doi.org/10.1007/s10114-010-8019-5.
  31. H. Huang, S. Xu, Fixed Point Theorems of Contractive Mappings in Cone b-Metric Spaces and Applications, Fixed Point Theory Appl 2013 (2013), 112. https://doi.org/10.1186/1687-1812-2013-112.
  32. M. Abbas, M.A. Khan, S. Radenovi´c, Common Coupled Fixed Point Theorems in Cone Metric Spaces for wCompatible Mappings, Appl. Math. Comp. 217 (2010), 195–202. https://doi.org/10.1016/j.amc.2010.05.042.
  33. S. Ali Abou Bakr, On Various Types of Cone Metric Spaces and Some Applications in Fixed Point Theory, Int. J. Nonlinear Anal. Appl. 14 (2023), 163–184. https://doi.org/10.22075/ijnaa.2021.24310.2715.
  34. M.A. Alghamdi, S.H. Alnafei, S. Radenovi´c, N. Shahzad, Fixed Point Theorems for Convex Contraction Mappings on Cone Metric Spaces, Math. Comp. Model. 54 (2011), 2020–2026. https://doi.org/10.1016/j.mcm.2011.05.010.
  35. I. Altun, G. Durmaz, Some Fixed Point Theorems on Ordered Cone Metric Spaces, Rend. Circ. Mat. Palermo 58 (2009), 319–325. https://doi.org/10.1007/s12215-009-0026-y.
  36. L. Wangwe, S. Kumar, Common Fixed Point Theorems for F-Kannan–Suzuki Type Mappings in TVS-Valued Cone Metric Space With Some Applications, J. Math. 2022 (2022), 6504663. https://doi.org/10.1155/2022/6504663.
  37. V. Pasquale, Common Fixed Points in Cone Metric Spaces, Rend. Circ. Mat. Palermo 56 (2007), 464–468.
  38. H. Liu, S. Xu, Cone Metric Spaces With Banach Algebras and Fixed Point Theorems of Generalized Lipschitz Mappings, Fixed Point Theory Appl. 2013 (2013), 320. https://doi.org/10.1186/1687-1812-2013-320.
  39. J. Fernandez, N. Malviya, S. Shukla, Cone b-Metric-Like Spaces Over Banach Algebra and Fixed Point Theorems With Application, Asian J. Math. Comp. Res. 18 (2017), 49–66.
  40. J. Fernandez, S. Saelee, K. Saxena, N. Malviya, P. Kumam, The A-Cone Metric Space Over Banach Algebra With Applications, Cogent Math. 4 (2017), 1282690. https://doi.org/10.1080/23311835.2017.1282690.
  41. J. Fernandez, N. Malviya, Zoran D. Mitrovi´c, A. Hussain, V. Parvaneh, Some Fixed Point Results on Nb–Cone Metric Spaces Over Banach Algebra, Adv. Diff. Equ. 2020 (2020), 529. https://doi.org/10.1186/s13662-020-02991-5.
  42. J. Fernandez, N. Malviya, A. Savi´c, M. Paunovi´c, Z.D. Mitrovi´c, The Extended Cone b-Metric-like Spaces over Banach Algebra and Some Applications, Mathematics 10 (2022), 149. https://doi.org/10.3390/math10010149.
  43. Z.D. Mitrovic, N. Hussain, On Results of Hardy-Rogers and Reich in Cone b-Metric Space Over Banach Algebra and Applications, U.P.B. Sci. Bull., Ser. A, 81 (2019), 147–154.
  44. Z.D. Mitrovic, H. Aydi, S. Radenovi´c, On Banach and Kannan Type Results in Cone bv(s)-Metric Spaces Over Banach Algebra, Acta Math. Univ. Comen. 89 (2020), 143–152.
  45. Z.D. Mitrovic, A. Ahmed, J.N. Salunke, A Cone Generalized b-Metric Like Space Over Banach Algebra and Contraction Principle, Thai J. Math. 19 (2021), 583–592.
  46. S. Radenovic, B.E. Rhoades, Fixed Point Theorem for Two Non-Self Mappings in Cone Metric Spaces, Comp. Math. Appl. 57 (2009), 1701–1707. https://doi.org/10.1016/j.camwa.2009.03.058.
  47. Sh. Rezapour, R. Hamlbarani, Some Notes on the Paper "Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings", J. Math. Anal. Appl. 345 (2008), 719–724. https://doi.org/10.1016/j.jmaa.2008.04.049.
  48. K. Roy, S. Panja, M. Saha, A Generalized Fixed Point Theorem in an Extended Cone b-Metric Space Over Banach Algebra With Its Application to Dynamical Programming, Appl. Math. E-Notes 21 (2021), 209–219.
  49. W. Shatanawi, Z. D. Mitrovi´c, N. Hussain, S. Radenovi´c, On Generalized Hardy–Rogers Type α-Admissible Mappings in Cone b-Metric Spaces over Banach Algebras, Symmetry 12 (2020), 81. https://doi.org/10.3390/sym12010081.
  50. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991.
  51. J. Dugundji, A. Granas, Fixed Point Theory, Vol. 61, Polish Scientific Publishers, Warsaw, Poland, 1982.
  52. L.G. Huang, X. Zhang, Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings, J. Math. Anal. Appl. 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087.
  53. S. Xu, S. Radenovic, Fixed Point Theorems of Generalized Lipschitz Mappings on Cone Metric Spaces Over Banach Algebras Without Assumption of Normality, Fixed Point Theory Appl. 2014 (2014), 102. https://doi.org/10.1186/1687-1812-2014-102.
  54. S. Omran, I. Masmali, On the (α − ψ)−contractivemappings in C ∗−algebra valued b−metric spaces and fixed point theorems, J. Math. 2021 (2021), 7865976. https://doi.org/10.1155/2021/7865976.
  55. A.A. Kilbas, H.H. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol. 204, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
  56. S.G. Samko, A.A. Kilbas, I. Oleg, O.I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, London, 1993.
  57. D. Baleanu, S. Rezapour, H. Mohammadi, Some Existence Results on Nonlinear Fractional Differential Equations, Phil. Trans. R. Soc. A. 371 (2013), 20120144. https://doi.org/10.1098/rsta.2012.0144.