Geometric Properties of Harmonic Function Affiliated With Fractional Operator

Main Article Content

Kuppuraj Divya Priya, K. Thilagavathi

Abstract

This paper's goal is to discover new results for the harmonic univalent functions G=υ+η defined in the open unit disc ρ={z: |z|<1}. Examining KS indicates the set of all analytic harmonic functions of form G in the open unit disc ρ. The convolution featuring the Mittag-Leffler function and fractional operator is applied to generate the family of harmonic univalent VKS. Motivated by Kamali [9], we present a novel of kamali class with VKS(δ) brand-new class of harmonic univalent functions Pα,β,zγ,δ,ε,ν inspiring inequality. Analysing Mittag-Leffler function convolution with modified tremblay operator inequality as a necessary and sufficient condition for univalent harmonic functions related to specific generalised Mittag-Leffler functions to be in the function class VKS(δ) is the aim of this research. Moreover, we discover extreme points, a distortion theorem, convolution properties, and convex combinations for the functions in VKS(δ).

Article Details

References

  1. O.P. Ahuja, Harmonic Starlikeness and Convexity of Integral Operators Generated by Hypergeometric Series, Integr. Transf. Spec. Funct. 20 (2009), 629–641. https://doi.org/10.1080/10652460902734124.
  2. O.P. Ahuja, Planar Harmonic Convolution Operators Generated by Hypergeometric Functions, Integr. Transf. Spec. Funct. 18 (2007), 165–177. https://doi.org/10.1080/10652460701210227.
  3. O.P. Ahuja, Planar Harmonic Univalent and Related Mappings, J. Ineq. Pure Appl. Math. 6 (2005), 122.
  4. A.G. Alamoush, M. Darus, On Subclass of Harmonic Univalent Functions Associated With Convolution of Derivative Operator, Bull. Calcutta Math. Soc. 106 (2014), 153–168.
  5. T.O. Salim, A.W. Faraj, A Generalization of Mittag-Leffler Function and Integral Operator Associated With Fractional Calculus, J. Fract. Calc. Appl. 3 (2012), 1–13.
  6. G. Choquet, Sur un Type de Transformation Analytique Généralisant la Représentation Conforme et Définie au Moyen de Fonctions Harmoniques, Bull. Sci. Math. 69 (1945), 156–165.
  7. J. Clunie, T.S. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn., Ser. A. I. Math. 9 (1984), 3–25.
  8. Z. Esa, A. Kilicman, R.W. Ibrahim, M.R. Ismail, S.K.S. Husain, Application of Modified Complex Tremblay Operator, AIP Conf. Proc. 1739 (2016), 020059. https://doi.org/10.1063/1.4952539.
  9. R. Hilfer, H.J. Seybold, Computation of the Generalized Mittag-Leffler Function and Its Inverse in the Complex Plane, Integr. Transf. Spec. Funct. 17 (2006), 637–652. https://doi.org/10.1080/10652460600725341.
  10. H. Kneser, Losung der Aufgabe 41, Jahresber. Deutsch. Math.-Verein, 35 (1926), 123–124.
  11. M. Kamali, H. Orhan, On a Subclass of Certain Starlike Functions With Negative Coefficients, Bull. Korean Math. Soc. 41 (2004), 53–71.
  12. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, NorthHolland Mathematical Studies, Vol. 204, Elsevier, Amsterdam, 2006.
  13. H. Lewy, On the Non-Vanishing of the Jacobian in Certain One-to-One Mappings, Bull. Amer.Math. Soc. 42 (1936), 689–692.
  14. T.R. Prabhakar, A Singular Integral Equation With a Generalized Mittag-Leffler Function in the Kernel, Yokohama Math. J. 19 (1971), 7–15.
  15. T. Radó, Aufgabe 41, Jahresber. Deutsch. Math. Verein, 35 (1926), 49.
  16. H.J. Seybold, R. Hilfer, Numerical Results for the Generalized Mittag-Leffler Function, Fract. Calc. Appl. Anal. 8 (2005), 127–139.
  17. H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, New York, 1985.
  18. H.M. Srivastava, R.K. Saxena, C. Ram, A Unified Presentation of the Gamma-Type Functions Occurring in Diffraction Theory and Associated Probability Distributions, Appl. Math. Comput. 162 (2005), 931–947. https://doi.org/10.1016/j.amc.2003.12.133.
  19. H.M. Srivastava, S.S. Eker, S.G. Hamidi, J.M. Jahangiri, Faber Polynomial Coefficient Estimates for Bi-univalent Functions Defined by the Tremblay Fractional Derivative Operator, Bull. Iran. Math. Soc. 44 (2018), 149–157. https://doi.org/10.1007/s41980-018-0011-3.
  20. T.O. Salim, Some Properties Relating to the Generalized Mitta-Leffler Function, Adv. Appl. Math.Anal. 4 (2009), 21–30.
  21. A. Wiman, Über den Fundamentalsatz in der Teorie der Funktionen Eα(x), Acta Math. 29 (1905), 191–201. https://doi.org/10.1007/bf02403202.