Geometric Properties of Harmonic Function Affiliated With Fractional Operator
Main Article Content
Abstract
This paper's goal is to discover new results for the harmonic univalent functions G=υ+η defined in the open unit disc ρ={z: |z|<1}. Examining KS indicates the set of all analytic harmonic functions of form G in the open unit disc ρ. The convolution featuring the Mittag-Leffler function and fractional operator is applied to generate the family of harmonic univalent VKS. Motivated by Kamali [9], we present a novel of kamali class with VKS(δ) brand-new class of harmonic univalent functions Pα,β,zγ,δ,ε,ν inspiring inequality. Analysing Mittag-Leffler function convolution with modified tremblay operator inequality as a necessary and sufficient condition for univalent harmonic functions related to specific generalised Mittag-Leffler functions to be in the function class VKS(δ) is the aim of this research. Moreover, we discover extreme points, a distortion theorem, convolution properties, and convex combinations for the functions in VKS(δ).
Article Details
References
- O.P. Ahuja, Harmonic Starlikeness and Convexity of Integral Operators Generated by Hypergeometric Series, Integr. Transf. Spec. Funct. 20 (2009), 629–641. https://doi.org/10.1080/10652460902734124.
- O.P. Ahuja, Planar Harmonic Convolution Operators Generated by Hypergeometric Functions, Integr. Transf. Spec. Funct. 18 (2007), 165–177. https://doi.org/10.1080/10652460701210227.
- O.P. Ahuja, Planar Harmonic Univalent and Related Mappings, J. Ineq. Pure Appl. Math. 6 (2005), 122.
- A.G. Alamoush, M. Darus, On Subclass of Harmonic Univalent Functions Associated With Convolution of Derivative Operator, Bull. Calcutta Math. Soc. 106 (2014), 153–168.
- T.O. Salim, A.W. Faraj, A Generalization of Mittag-Leffler Function and Integral Operator Associated With Fractional Calculus, J. Fract. Calc. Appl. 3 (2012), 1–13.
- G. Choquet, Sur un Type de Transformation Analytique Généralisant la Représentation Conforme et Définie au Moyen de Fonctions Harmoniques, Bull. Sci. Math. 69 (1945), 156–165.
- J. Clunie, T.S. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn., Ser. A. I. Math. 9 (1984), 3–25.
- Z. Esa, A. Kilicman, R.W. Ibrahim, M.R. Ismail, S.K.S. Husain, Application of Modified Complex Tremblay Operator, AIP Conf. Proc. 1739 (2016), 020059. https://doi.org/10.1063/1.4952539.
- R. Hilfer, H.J. Seybold, Computation of the Generalized Mittag-Leffler Function and Its Inverse in the Complex Plane, Integr. Transf. Spec. Funct. 17 (2006), 637–652. https://doi.org/10.1080/10652460600725341.
- H. Kneser, Losung der Aufgabe 41, Jahresber. Deutsch. Math.-Verein, 35 (1926), 123–124.
- M. Kamali, H. Orhan, On a Subclass of Certain Starlike Functions With Negative Coefficients, Bull. Korean Math. Soc. 41 (2004), 53–71.
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, NorthHolland Mathematical Studies, Vol. 204, Elsevier, Amsterdam, 2006.
- H. Lewy, On the Non-Vanishing of the Jacobian in Certain One-to-One Mappings, Bull. Amer.Math. Soc. 42 (1936), 689–692.
- T.R. Prabhakar, A Singular Integral Equation With a Generalized Mittag-Leffler Function in the Kernel, Yokohama Math. J. 19 (1971), 7–15.
- T. Radó, Aufgabe 41, Jahresber. Deutsch. Math. Verein, 35 (1926), 49.
- H.J. Seybold, R. Hilfer, Numerical Results for the Generalized Mittag-Leffler Function, Fract. Calc. Appl. Anal. 8 (2005), 127–139.
- H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, New York, 1985.
- H.M. Srivastava, R.K. Saxena, C. Ram, A Unified Presentation of the Gamma-Type Functions Occurring in Diffraction Theory and Associated Probability Distributions, Appl. Math. Comput. 162 (2005), 931–947. https://doi.org/10.1016/j.amc.2003.12.133.
- H.M. Srivastava, S.S. Eker, S.G. Hamidi, J.M. Jahangiri, Faber Polynomial Coefficient Estimates for Bi-univalent Functions Defined by the Tremblay Fractional Derivative Operator, Bull. Iran. Math. Soc. 44 (2018), 149–157. https://doi.org/10.1007/s41980-018-0011-3.
- T.O. Salim, Some Properties Relating to the Generalized Mitta-Leffler Function, Adv. Appl. Math.Anal. 4 (2009), 21–30.
- A. Wiman, Über den Fundamentalsatz in der Teorie der Funktionen Eα(x), Acta Math. 29 (1905), 191–201. https://doi.org/10.1007/bf02403202.