A Prey-Predator Mathematical Model With Diffusion and Home Ranges

Main Article Content

Khalaf M. Alanazi

Abstract

A prey-predator model with diffusion and home ranges is considered. The model consists of partial differential and integral equations. The model incorporates complex mathematical expressions, which make it hard to analyze mathematically. Therefore, a numerical solution is provided in two cases. The first case considers the prey population growing logistically, while we consider the exponential growth of the prey population in the second case. We study the dynamic behavior of the two species for both cases. Special attention goes to the impact of home ranges and diffusion coefficients on the dynamics of prey and predator populations.

Article Details

References

  1. K.M. Alanazi, Modeling and Simulating an Epidemic in Two Dimensions with an Application Regarding COVID19, Computation 12 (2024), 34. https://doi.org/10.3390/computation12020034.
  2. K.M. Alanazi, Z. Jackiewicz, H.R. Thieme, Numerical Simulations of Spread of Rabies in a Spatially Distributed Fox Population, Math. Comp. Simul. 159 (2019), 161–182. https://doi.org/10.1016/j.matcom.2018.11.010.
  3. M.A. Aziz-Alaoui, M. Daher Okiye, Boundedness and Global Stability for a Predator-Prey Model With Modified Leslie-Gower and Holling-Type II Schemes, Appl. Math. Lett. 16 (2003), 1069–1075. https://doi.org/10.1016/s0893-9659(03)90096-6.
  4. E. Beretta, Y. Kuang, Global Analyses in Some Delayed Ratio-Dependent Predator-Prey Systems, Nonlinear Anal.: Theory Meth. Appl. 32 (1998), 381–408. https://doi.org/10.1016/s0362-546x(97)00491-4.
  5. J. Chattopadhyay, O. Arino, A Predator-Prey Model With Disease in the Prey, Nonlinear Anal.: Theory Meth. Appl. 36 (1999), 747–766. https://doi.org/10.1016/s0362-546x(98)00126-6.
  6. F. Chen, On a Nonlinear Nonautonomous Predator-Prey Model With Diffusion and Distributed Delay, J. Comp. Appl. Math. 180 (2005), 33–49. https://doi.org/10.1016/j.cam.2004.10.001.
  7. K.S. Cheng, Uniqueness of a Limit Cycle for a Predator-Prey System, SIAM J. Math. Anal. 12 (1981), 541–548. https://doi.org/10.1137/0512047.
  8. J.M. Cushing, Periodic Time-Dependent Predator-Prey Systems, SIAM J. Appl. Math. 32 (1977), 82–95. https://doi.org/10.1137/0132006.
  9. W. Ding, W. Huang, Traveling Wave Solutions for Some Classes of Diffusive Predator-Prey Models, J. Dyn. Diff. Equ. 28 (2015), 1293–1308. https://doi.org/10.1007/s10884-015-9472-8.
  10. S.R. Dunbar, Travelling Wave Solutions of Diffusive Lotka-Volterra Equations, J. Math. Biol. 17 (1983), 11–32. https://doi.org/10.1007/bf00276112.
  11. S.R. Dunbar, Traveling Wave Solutions of Diffusive Lotka-Volterra Equations: A Heteroclinic Connection in R 4 , Trans. Amer. Math. Soc. 286 (1984), 557–594. https://doi.org/10.2307/1999810.
  12. S.R. Dunbar, Traveling Waves in Diffusive Predator-Prey Equations: Periodic Orbits and Point-to-Periodic Heteroclinic Orbits, SIAM J. Appl. Math. 46 (1986), 1057–1078. https://doi.org/10.1137/0146063.
  13. R.A. Gardner, Existence of Travelling Wave Solutions of Predator-Prey Systems via the Connection Index, SIAM J. Appl. Math. 44 (1984), 56–79. https://doi.org/10.1137/0144006.
  14. S.A. Gourley, N.F. Britton, A Predator-Prey Reaction-Diffusion System With Nonlocal Effects, J. Math. Biol. 34 (1996), 297–333. https://doi.org/10.1007/bf00160498.
  15. L. Han, Z. Ma, H.W. Hethcote, Four Predator Prey Models With Infectious Diseases, Math. Comp. Model. 34 (2001), 849–858. https://doi.org/10.1016/s0895-7177(01)00104-2.
  16. S.B. Hsu, T.W. Huang, Global Stability for a Class of Predator-Prey Systems, SIAM J. Appl. Math. 55 (1995), 763–783. https://doi.org/10.1137/s0036139993253201.
  17. Y. Huang, F. Chen, L. Zhong, Stability Analysis of a Prey–predator Model With Holling Type Iii Response Function Incorporating a Prey Refuge, Appl. Math. Comp. 182 (2006), 672–683. https://doi.org/10.1016/j.amc.2006.04.030.
  18. W. Huang, Traveling Wave Solutions for a Class of Predator-Prey Systems, J. Dyn. Diff. Equ. 24 (2012), 633–644. https://doi.org/10.1007/s10884-012-9255-4.
  19. T.W. Hwang, Uniqueness of the Limit Cycle for Gause-Type Predator-Prey Systems, J. Math. Anal. Appl. 238 (1999), 179–195. https://doi.org/10.1006/jmaa.1999.6520.
  20. A. Korobeinikov, A Lyapunov Function for Leslie-Gower Predator-Prey Models, Appl. Math. Lett. 14 (2001), 697–699. https://doi.org/10.1016/s0893-9659(01)80029-x.
  21. M.A. Lewis, J.D. Murray, Modelling Territoriality and Wolf-Deer Interactions, Nature 366 (1993), 738–740. https://doi.org/10.1038/366738a0.
  22. G. Lin, Spreading Speeds of a Lotka-Volterra Predator-prey System: The Role of the Predator, Nonlinear Analy.: Theory Meth. Appl. 74 (2011), 2448–2461. https://doi.org/10.1016/j.na.2010.11.046.
  23. M. Liu, K. Wang, Dynamics of a Two-Prey One-Predator System in Random Environments, J. Nonlinear Sci. 23 (2013), 751–775. https://doi.org/10.1007/s00332-013-9167-4.
  24. A.J. Lotka, Analytical Note on Certain Rhythmic Relations in Organic Systems, Proc. Natl. Acad. Sci. U.S.A. 6 (1920), 410–415. https://doi.org/10.1073/pnas.6.7.410.
  25. P. Magal, X.Q. Zhao, Global Attractors and Steady States for Uniformly Persistent Dynamical Systems, SIAM J. Math. Anal. 37 (2005), 251–275. https://doi.org/10.1137/s0036141003439173.
  26. J.D. Murray, Mathematical Biology, Springer, Berlin, 1989.
  27. A.F. Nindjin, M.A. Aziz-Alaoui, M. Cadivel, Analysis of a Predator–prey Model With Modified Leslie-Gower and Holling-Type II Schemes With Time Delay, Nonlinear Anal.: Real World Appl. 7 (2006), 1104–1118. https://doi.org/10.1016/j.nonrwa.2005.10.003.
  28. S. Pan, Asymptotic Spreading in a Lotka-Volterra Predator-Prey System, J. Math. Anal. Appl. 407 (2013), 230–236. https://doi.org/10.1016/j.jmaa.2013.05.031.
  29. S. Pan, Invasion Speed of a Predator-Prey System, Appl. Math. Lett. 74 (2017), 46–51. https://doi.org/10.1016/j.aml.2017.05.014.
  30. R. Peng, M. Wang, Positive Steady States of the Holling-Tanner Prey–predator Model With Diffusion, Proc. R. Soc. Edinb. Sect. A Math. 135 (2005), 149–164. https://doi.org/10.1017/s0308210500003814.
  31. F. Rao, C. Castillo-Chavez, Y. Kang, Dynamics of a Diffusion Reaction Prey-predator Model With Delay in Prey: Effects of Delay and Spatial Components, J. Math. Anal. Appl. 461 (2018), 1177–1214. https://doi.org/10.1016/j.jmaa.2018.01.046.
  32. M.L. Rosenzweig, R.H. MacArthur, Graphical Representation and Stability Conditions of Predator-Prey Interactions, Amer. Naturalist 97 (1963), 209–223. https://doi.org/10.1086/282272.
  33. E. Sáez, E. González-Olivares, Dynamics of a Predator-Prey Model, SIAM J. Appl. Math. 59 (1999), 1867–1878. https://doi.org/10.1137/s0036139997318457.
  34. X. Song, Y. Li, Dynamic Behaviors of the Periodic Predator–prey Model With Modified Leslie-Gower Holling-Type Ii Schemes and Impulsive Effect, Nonlinear Anal.: Real World Appl. 9 (2008), 64–79. https://doi.org/10.1016/j.nonrwa.2006.09.004.
  35. G.Q. Sun, J. Zhang, L.P. Song, Z. Jin, B.L. Li, Pattern Formation of a Spatial Predator–prey System, Appl. Math. Comp. 218 (2012), 11151–11162. https://doi.org/10.1016/j.amc.2012.04.071.
  36. H.R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, 2003.
  37. H.R. Thieme, Global Stability of the Endemic Equilibrium in Infinite Dimension: Lyapunov Functions and Positive Operators, J. Diff. Equ. 250 (2011), 3772–3801. https://doi.org/10.1016/j.jde.2011.01.007.
  38. H. R. Thieme, X.Q. Zhao, A Non-Local Delayed and Diffusive Predator-prey Model, Nonlinear Anal.: Real World Appl. 2 (2001), 145–160. https://doi.org/10.1016/s0362-546x(00)00112-7.
  39. V. Volterra, Fluctuations in the Abundance of a Species Considered Mathematically, Nature 119 (1927), 12–13. https://doi.org/10.1038/119012b0.
  40. M. Wang, On Some Free Boundary Problems of the Prey-Predator Model, J. Diff. Equ. 256 (2014), 3365–3394. https://doi.org/10.1016/j.jde.2014.02.013.
  41. W. Wang, L. Chen, A Predator-Prey System With Stage-Structure for Predator, Comp. Math. Appl. 33 (1997), 83–91. https://doi.org/10.1016/s0898-1221(97)00056-4.
  42. W. Wang, G. Mulone, F. Salemi, V. Salone, Permanence and Stability of a Stage-Structured Predator–Prey Model, J. Math. Anal. Appl. 262 (2001), 499–528. https://doi.org/10.1006/jmaa.2001.7543.
  43. K.A.J. White, J.D. Murray, M.A. Lewis, Wolf-Deer Interactions: A Mathematical Model, Proc. R. Soc. Lond. B 263 (1996), 299–305. https://doi.org/10.1098/rspb.1996.0046.
  44. D. Xiao, Z. Zhang, On the Uniqueness and Nonexistence of Limit Cycles for Predator Prey Systems, Nonlinearity 16 (2003), 1185–1201. https://doi.org/10.1088/0951-7715/16/3/321.