A Strongly Convergent Hybrid Method to Unify Split Generalized Mixed Equilibrium and Fixed Point Problems

Main Article Content

Shuja Haider Rizvi, Fahad Sikander

Abstract

The aim of this paper is twofold, we propose an extension to the split generalized mixed equilibrium problem firstly and introduce an iterative method based on a hybrid extragradient method. The goal is to efficiently find a common solution for both the split generalized mixed equilibrium problem and the fixed point problem concerning a nonexpansive mapping within the context of real Hilbert spaces. We conduct a thorough analysis of the proposed iterative method and establish a strong convergence theorem under certain mild conditions. Moreover, we present various implications derived from our main result and conduct numerical experiments to validate our findings. Our outcomes represent a substantial expansion and generalization of existing iterative methods and results within this field.

Article Details

References

  1. K. Fan, A Minimax Inequality and Applications, In: O. Shisha, (ed.) Inequality, III, pp. 103–113, Academic Press, New York, 1972.
  2. H. Nikaidô, K. Isoda, Note on Non-Cooperative Convex Game, Pac. J. Math. 5 (1955), 807–815. https://doi.org/10.2140/pjm.1955.5.807.
  3. E. Blum, W. Oettli, From Optimization and Variational Inequalities to Equilibrium Problems, Math. Stud. 6 (1994), 123–145. https://cir.nii.ac.jp/crid/1572261551155331712.
  4. P. Daniele, F. Giannessi, A. Mougeri, (eds) Equilibrium Problems and Variational Models, Vol. 68, Nonconvex Optimization and its Application, Kluwer Academic Publications, Norwell, 2003.
  5. F. Giannessi, (ed.) Vector Variational Inequalities and Vector Equilibria Mathematical Theories, Vol. 38, Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, 2000.
  6. B. Martinet, Regularisation d’Inequations Variationelles par Approximations Successives, Rev. Fr. Inf. Rech. Oper. 4 (1970), 154–159.
  7. R.T. Rockafellar, Monotone Operators and the Proximal Point Algorithm, SIAM J. Control Optim. 14 (1976), 877–898. https://doi.org/10.1137/0314056.
  8. A. Moudafi, Proximal Point Algorithm Extended to Equilibrium Problem, J. Nat. Geom. 15 (1999), 91–100. https://hal.univ-antilles.fr/hal-00773194.
  9. K.R. Kazmi, S.H. Rizvi, Iterative Algorithms for Generalized Mixed Equilibrium Problems, J. Egypt. Math. Soc. 21 (2013), 340–345. https://doi.org/10.1016/j.joems.2013.03.007.
  10. M.A. Noor, Auxiliary Principle Technique for Equilibrium Problems, J. Optim. Theory Appl. 122 (2004), 371–386. https://doi.org/10.1023/b:jota.0000042526.24671.b2.
  11. L.C. Ceng, J.C. Yao, A Hybrid Iterative Scheme for Mixed Equilibrium Problems and Fixed Point Problems, J. Comp. Appl. Math. 214 (2008), 186–201. https://doi.org/10.1016/j.cam.2007.02.022.
  12. F. Cianciaruso, G. Marino, L. Muglia, Y. Yao, A Hybrid Projection Algorithm for Finding Solutions of Mixed Equilibrium Problem and Variational Inequality Problem, Fixed Point Theory Appl. 2010 (2010), 383740. https://doi.org/10.1155/2010/383740.
  13. S.D. Flåm, A.S. Antipin, Equilibrium Programming Using Proximal-Like Algorithms, Math. Program. 78 (1996), 29–41. https://doi.org/10.1007/bf02614504.
  14. K.R. Kazmi, S.H. Rizvi, A hybrid extragradient method for approximating the common solutions of a variational inequality, a system of variational inequalities, a mixed equilibrium problem and a fixed point problem, Appl. Math. Comp. 218 (2012), 5439–5452. https://doi.org/10.1016/j.amc.2011.11.032.
  15. K.R. Kazmi, S.H. Rizvi, Implicit Iterative Method for Approximating a Common Solution of Split Equilibrium Problem and Fixed Point Problem for a Nonexpansive Semigroup, Arab J. Math. Sci. 20 (2014), 57–75. https://doi.org/10.1016/j.ajmsc.2013.04.002.
  16. K.R. Kazmi, S.H. Rizvi, Iterative Approximation of a Common Solution of a Split Equilibrium Problem, a Variational Inequality Problem and a Fixed Point Problem, J. Egypt. Math. Soc. 21 (2013), 44–51. https://doi.org/10.1016/j.joems.2012.10.009.
  17. K.R. Kazmi, S.H. Rizvi, An Iterative Algorithm for Generalized Mixed Equilibrium Problem, Afr. Mat. 25 (2013), 857–867. https://doi.org/10.1007/s13370-013-0159-1.
  18. K.R. Kazmi, S.H. Rizvi, Mohd. Farid, A Viscosity Cesàro Mean Approximation Method for Split Generalized Vector Equilibrium Problem and Fixed Point Problem, J. Egypt. Math. Soc. 23 (2015), 362–370. https://doi.org/10.1016/j.joems.2014.05.001.
  19. S.H. Rizvi, A Strong Convergence Theorem for SplitMixed Equilibrium and Fixed Point Problems for Nonexpansive Mappings, J. Fixed Point Theory Appl. 20 (2018), 8. https://doi.org/10.1007/s11784-018-0487-8.
  20. Y. Censor, A. Gibali, S. Reich, Algorithms for the Split Variational Inequality Problem, Numer. Algor. 59 (2011), 301–323. https://doi.org/10.1007/s11075-011-9490-5.
  21. A. Moudafi, Split Monotone Variational Inclusions, J. Optim. Theory Appl. 150 (2011), 275–283. https://doi.org/10.1007/s10957-011-9814-6.
  22. J.W. Peng, J.C. Yao, A New Hybrid-Extragradient Method for Generalized Mixed Equilibrium Problems, Fixed Point Problems and Variational Inequality Problems, Taiwan. J. Math. 12 (2008), 1401–1432. https://doi.org/10.11650/twjm/1500405033.
  23. A. Moudafi, M. Théra, Proximal and Dynamical Approaches to Equilibrium Problems, in: M. Théra, R. Tichatschke (Eds.), Ill-Posed Variational Problems and Regularization Techniques, Springer Berlin Heidelberg, Berlin, Heidelberg, 1999: pp. 187–201. https://doi.org/10.1007/978-3-642-45780-7_12.
  24. A. Moudafi, Mixed Equilibrium Problems: Sensitivity Analysis and Algorithmic Aspect, Comp. Math. Appl. 44 (2002), 1099–1108. https://doi.org/10.1016/s0898-1221(02)00218-3.
  25. M.A. Noor, Generalized Monotone Mixed Variational Inequalities, Math. Comp. Model. 29 (1999), 87–93. https://doi.org/10.1016/s0895-7177(99)00032-1.
  26. P. Hartman, G. Stampacchia, On Some Non-Linear Elliptic Differential-Functional Equations, Acta Math. 115 (1966), 271–310. https://doi.org/10.1007/bf02392210.
  27. Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A Unified Approach for Inversion Problems in Intensity-Modulated Radiation Therapy, Phys. Med. Biol. 51 (2006), 2353–2365. https://doi.org/10.1088/0031-9155/51/10/001.
  28. Y. Censor, T. Elfving, A Multiprojection Algorithm Using Bregman Projections in a Product Space, Numer. Algor. 8 (1994), 221–239. https://doi.org/10.1007/bf02142692.
  29. E. Masad, S. Reich, A Note on the Multiple Split Convex Feasibility Problem in Hilbert Space, J. Nonlinear convex Anal. 8 (2007), 367–371.
  30. C. Byrne, Iterative Oblique Projection Onto Convex Sets and the Split Feasibility Problem, Inverse Probl. 18 (2002), 441–453. https://doi.org/10.1088/0266-5611/18/2/310.
  31. C. Byrne, A Unified Treatment of Some Iterative Algorithms in Signal Processing and Image Reconstruction, Inverse Probl. 20 (2003), 103–120. https://doi.org/10.1088/0266-5611/20/1/006.
  32. P.L. Combettes, The Convex Feasibility Problem in Image Recovery, Adv. Imag. Elec. Phys. 95 (1996), 155–270. https://doi.org/10.1016/s1076-5670(08)70157-5.
  33. W. Mann, Mean Value Methods in Iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.
  34. B. Halpern, Fixed Points of Nonexpanding Maps, Bull. Amer. Math. Soc. 73 (1967), 591–597.
  35. G.M. Korpelevich, The Extragradient Method for Finding Saddle Points and Other Problems, Matecon, 12 (1976), 747–756. https://cir.nii.ac.jp/crid/1571698600143951616.
  36. W. Takahashi, M. Toyoda, Weak Convergence Theorems for Nonexpansive Mappings and Monotone Mappings, J. Optim. Theory Appl. 118 (2003), 417–428. https://doi.org/10.1023/a:1025407607560.
  37. K. Nakajo, W. Takahashi, Strong Convergence Theorems for Nonexpansive Mappings and Nonexpansive Semigroups, J. Math. Anal. Appl. 279 (2003), 372–379. https://doi.org/10.1016/s0022-247x(02)00458-4.
  38. H. Iiduka, W. Takahashi, Strong Convergence Theorem by a Hybrid Method for Nonlinear Mappings of Nonexpeusive and Monotone Type and Applications, Adv. Nonlinear Var. Ineq. 9 (2006), 1–10.
  39. N. Nadezhkina, W. Takahashi, Strong Convergence Theorem by a Hybrid Method for Nonexpansive Mappings and Lipschitz-Continuous Monotone Mappings, SIAM J. Optim. 16 (2006), 1230–1241. https://doi.org/10.1137/050624315.
  40. A. Tada, W. Takahashi, Weak and Strong Convergence Theorems for a Nonexpansive Mapping and an Equilibrium Problem, J. Optim. Theory Appl. 133 (2007), 359–370. https://doi.org/10.1007/s10957-007-9187-z.
  41. A. Moudafi, Weak Convergence Theorems for Nonexpansive Mappings and Equilibrium Problems, J. Nonlinear Convex Anal. 9 (2008), 37–43.
  42. B.D. Rouhani, K.R. Kazmi, S.H. Rizvi, A Hybrid-Extragradient-Convex Approximation Method for a System of Unrelated Mixed Equilibrium Problems, Trans. Math. Program. Appl. 1 (2013), 82–95.
  43. S. Takahashi, W. Takahashi, Strong Convergence Theorem for a Generalized Equilibrium Problem and a Nonexpansive Mapping in a Hilbert Space, Nonlinear Anal.: Theory Meth. Appl. 69 (2008), 1025–1033. https://doi.org/10.1016/j.na.2008.02.042.
  44. S. Takahashi, W. Takahashi, Viscosity Approximation Methods for Equilibrium Problems and Fixed Point Problems in Hilbert Spaces, J. Math. Anal. Appl. 331 (2007), 506–515. https://doi.org/10.1016/j.jmaa.2006.08.036.
  45. H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, 2011.
  46. Z. Opial, Weak Convergence of the Sequence of Successive Approximations for Nonexpansive Mappings, Bull. Amer. Math. Soc. 73 (1967), 595–597.