A New Fixed Point Approach for Approximating Solutions of Fractional Differential Equations in Banach Spaces

Main Article Content

Bashir Nawaz, Abdallah Labsir, Kifayat Ullah, Junaid Ahmad

Abstract

This contribution targets the solution of fractional differential equations (FDEs) via novel iterative approach and in a new class of nonlinear mappings. Our approach is based on the class of (α, β, γ)-nonexpansive mappings and three-step M-iterative scheme. Under various assumptions, we first carry out some weak and strong convergence results in a setting of a Banach spaces. After this, we carry out an application of one our main result to find approximate solution for a broad class of FDEs. Eventually, we we construct a new example of (α, β, γ)-nonexpansive mappings and show that this new mapping is not continuous on its whole domain and hence it is not nonexpansive. Using this example, we perform a numerical simulation of various iterative scheme including our M-iterative scheme. It has been observed the numerical effectiveness of the M-iterative scheme is high as compared to the other iterative schemes. Accordingly, our main outcome is new/extends some known results of the literature.

Article Details

References

  1. J. Ahmad, K. Ullah, H.A. Hammad, R. George, A Solution of a Fractional Differential Equation via Novel FixedPoint Approaches in Banach Spaces, AIMS Math. 8 (2023), 12657–12670. https://doi.org/10.3934/math.2023636.
  2. J. Ahmad, K. Ullah, M. Arshad, Approximation of Fixed Points for a Class of Mappings Satisfying Property (CSC) in Banach Spaces, Math. Sci. 15 (2021), 207–213. https://doi.org/10.1007/s40096-021-00407-3.
  3. J. Ahmad, M. Arshad, A Modified Fixed Point Iterative Scheme Based on Green’s Function With Application to BVPs, Asian-Eur. J. Math. 17 (2024), 2450038. https://doi.org/10.1142/s1793557124500384.
  4. M. Abbas, T. Nazir, A New Faster Iteration Process Applied to Constrained Minimization and Feasibility Problems, Math. Vesnik. 66 (2014), 223–234.
  5. D.R. Sahu, D. O’Regan, R.P. Agarwal, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, New York, 2009. https://doi.org/10.1007/978-0-387-75818-3.
  6. R.P. Agarwal, D. O’Regon, D.R. Sahu, Iterative construction of fixed points of nearly asymtotically non-expansive mappings, J. Nonlinear Convex Anal. 8 (2007), 61–79.
  7. K. Aoyama, F. Kohsaka, Fixed Point Theorem for α–Nonexpansive Mappings in Banach Spaces, Nonlinear Anal.: Theory Meth. Appl. 74 (2011), 4387–4391. https://doi.org/10.1016/j.na.2011.03.057.
  8. S. Banach, Sur les Operations dans les Ensembles Abstraits et leur Application aux Equations Integrales, Fund. Math. 3 (1922), 133–181.
  9. F.E. Browder, Nonexpansive Nonlinear Operators in a Banach Space, Proc. Natl. Acad. Sci. U.S.A. 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041.
  10. J.A. Clarkson, Uniformly Convex Spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414. https://doi.org/10.1090/s0002-9947-1936-1501880-4.
  11. D. Göhde, Zum Prinzip der Kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312.
  12. S. Ishikawa, Fixed Points by a New Iteration Method, Proc. Amer. Math. Soc. 44 (1974), 147–150.
  13. E. Karapınar, T. Abdeljawad, F. Jarad, Applying New Fixed Point Theorems on Fractional and Ordinary Differential Equations, Adv. Differ. Equ. 2019 (2019), 421. https://doi.org/10.1186/s13662-019-2354-3.
  14. E. Karapinar, K. Tas, Generalized (C)–Conditions and Related Fixed Point Theorems, Comp. Math. Appl. 61 (2011), 3370–3380. https://doi.org/10.1016/j.camwa.2011.04.035.
  15. S. Khatoon, I. Uddin, D. Baleanu, Approximation of Fixed Point and Its Application to Fractional Differential Equation, J. Appl. Math. Comp. 66 (2020), 507–525. https://doi.org/10.1007/s12190-020-01445-1.
  16. W.A. Kirk, A Fixed Point Theorem for Mappings which do not Increase Distances, Amer. Math. Mon. 72 (1965), 1004–1006. https://doi.org/10.2307/2313345.
  17. W.R. Mann, Mean Value Methods in Iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510. https://doi.org/10.1090/s0002-9939-1953-0054846-3.
  18. M.A. Noor, New Approximation Schemes for General Variational Inequalities, J. Math. Anal. Appl. 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042.
  19. Z. Opial, Weak and Strong Convergence of the Sequence of Successive Approximations for Nonexpansive Mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
  20. E. Picard, Mémoire sur la Théorie des Équations aux Dérivées Partielles et la Méthode des Approximations Successives, J. Math. Pures Appl. 6 (1880), 145–210.
  21. J. Schu, Weak and Strong Convergence to Fixed Points of Asymptotically Nonexpansive Mappings, Bull. Austral. Math. Soc. 43 (1991), 153–159.
  22. H.F. Senter, W.G. Dotson, Approximating Fixed Points of Nonexpansive Mappings, Proc. Amer. Math. Soc. 44 (1974), 375–380.
  23. H.F. Senter, W.G. Doston, Approximating Fixed Points of Nonexpansive Mappings, Proc. Amer. Math. Soc. 44 (1974), 375–380.
  24. T. Suzuki, Fixed Point Theorems and Convergence Theorems for Some Generalized Nonexpansive Mappings, J. Math. Anal. Appl. 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023.
  25. W. Takahashi, Nonlinear Functional Analysis, Yokohoma Publishers, Yokohoma, 2000.
  26. B.S. Thakur, D. Thakur, M. Postolache, A New Iterative Scheme for Numerical Reckoning Fixed Points of Suzuki’s Generalized Nonexpansive Mappings, Appl. Math. Comp. 275 (2016), 147–155. https://doi.org/10.1016/j.amc.2015.11.065.
  27. K. Ullah, J. Ahmad, H.A. Hammad, R. George, Iterative Schemes for Numerical Reckoning of Fixed Points of New Nonexpansive Mappings with an Application, AIMS Math. 8 (2023), 10711–10727. https://doi.org/10.3934/math.2023543.
  28. K. Ullah, M. Arshad, Numerical Reckoning Fixed Points for Suzuki’s Generalized Nonexpansive Mappings via New Iteration Process, Filomat 32 (2018), 187–196. https://doi.org/10.2298/fil1801187u.