On Stationary Points of Multi-Valued Suzuki Mappings via New Approach in Metric Spaces
Main Article Content
Abstract
We investigate stationary points of multivalued Suzuki maps within the framework of 2-uniformly convex hyperbolic spaces. Initially, we present key strong and ∆-convergence results, followed by an example that demonstrates the theoretical findings. Additionally, our results hold in uniformly convex Banach spaces, CAT(0) spaces, and certain CAT(κ) spaces. Furthermore, our findings encompass cases where the map is assumed to be nonexpansive.
Article Details
References
- K. Ullah, J. Ahmad, A.R. Khan, On Multi-Valued Version of M-Iteration Process, Asian-Eur. J. Math. 16 (2023), 2350017. https://doi.org/10.1142/s1793557123500171.
- A. Abkar, M. Eslamian, A fixed point theorem for generalized nonexpansive multivalued mappings, Fixed Point Theory, 12 (2011), 241–246.
- K. Ullah, J. Ahmad, M. Arshad, Z. Ma, T. Abdeljawad, An Efficient Iterative Procedure for Proximally QuasiNonexpansive Mappings and a Class of Boundary Value Problems, Axioms 11 (2022), 90. https://doi.org/10.3390/axioms11030090.
- K. Ullah, J. Ahmad, M. Khan Safi, N. Muhammad, Convergence Results of a Faster Iterative Scheme Including Multi-Valued Mappings in Banach Spaces, Filomat 35 (2021), 1359–1368. https://doi.org/10.2298/fil2104359u.
- B. Panyanak, Stationary Points of Lower Semicontinuous Multifunctions, J. Fixed Point Theory Appl. 22 (2020), 43. https://doi.org/10.1007/s11784-020-00778-5.
- J.P. Aubin, J. Siegel, Fixed Points and Stationary Points of Dissipative Multivalued Maps, Proc. Amer. Math. Soc. 78 (1980), 391–398.
- L. Chen, L. Gao, D. Chen, Fixed Point Theorems of Mean Nonexpansive Set-Valued Mappings in Banach Spaces, J. Fixed Point Theory Appl. 19 (2017), 2129–2143. https://doi.org/10.1007/s11784-017-0401-9.
- R. Espínola, M. Hosseini, K. Nourouzi, On Stationary Points of Nonexpansive Set-Valued Mappings, Fixed Point Theory Appl. 2015 (2015), 236. https://doi.org/10.1186/s13663-015-0481-4.
- M. Hosseini, K. Nourouzi, D. O’Regan, Stationary Points of Set-Valued Contractive and Nonexpansive Mappings on Ultrametric Spaces, Fixed Point Theory, 19 (2018), 587–594. https://doi.org/10.24193/fpt-ro.2018.2.46.
- B. Panyanak, Endpoints of Multivalued Nonexpansive Mappings in Geodesic Spaces, Fixed Point Theory Appl. 2015 (2015), 147. https://doi.org/10.1186/s13663-015-0398-y.
- S. Reich, Fixed Points of Contractive Functions, Boll. Unione Mat. Ital. 5 (1972), 26–42.
- S. Saejung, Remarks on Endpoints of Multivalued Mappings in Geodesic Spaces, Fixed Point Theory Appl 2016 (2016), 52. https://doi.org/10.1186/s13663-016-0541-4.
- K.P.R. Sastry, G.V.R. Babu, Convergence of Ishikawa Iterates for a Multi-Valued Mapping with a Fixed Point, Czech. Math. J. 55 (2005), 817–826. https://doi.org/10.1007/s10587-005-0068-z.
- B. Panyanak, Mann and Ishikawa Iterative Processes for Multivalued Mappings in Banach Spaces, Comput. Math. Appl. 54 (2007), 872–877. https://doi.org/10.1016/j.camwa.2007.03.012.
- Y. Song, H. Wang, Erratum to "Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces" [Comput. Math. Appl. 54 (2007) 872–877], Comput. Math. Appl. 55 (2008), 2999–3002. https://doi.org/10.1016/j.camwa.2007.11.042.
- N. Shahzad, H. Zegeye, On Mann and Ishikawa Iteration Schemes for Multi-Valued Maps in Banach Spaces, Nonlinear Anal.: Theory Meth. Appl. 71 (2009), 838–844. https://doi.org/10.1016/j.na.2008.10.112.
- Y. Song, Y.J. Cho, Some Notes on Ishikawa Iteration for Multi-Valued Mappings, Bull. Korean Math. Soc. 48 (2011), 575–584. https://doi.org/10.4134/BKMS.2011.48.3.575.
- B. Panyanak, Approximating Endpoints of Multi-Valued Nonexpansive Mappings in Banach Spaces, J. Fixed Point Theory Appl. 20 (2018), 77. https://doi.org/10.1007/s11784-018-0564-z.
- K. Ullah, M.S.U. Khan, N. Muhammad, J. Ahmad, Approximation of Endpoints for Multivalued Nonexpansive Mappings in Geodesic Spaces, Asian-Eur. J. Math. 13 (2019), 2050141. https://doi.org/10.1142/s1793557120501417.
- T. Laokul, B. Panyanak, A Generalization of the (CN) Inequality and Its Applications, Carpathian J. Math. 36 (2020), 81–90. https://www.jstor.org/stable/26898784.
- T. Abdeljawad, K. Ullah, J. Ahmad, N. Mlaiki, Iterative Approximation of Endpoints for Multivalued Mappings in Banach Spaces, J. Funct. Spaces 2020 (2020), 2179059. https://doi.org/10.1155/2020/2179059.
- K. Ullah, J. Ahmad, N. Muhammad, Approximation of Endpoints for Multi-Valued Mappings in Metric Spaces, J. Linear Topl. Algebra, 9 (2020), 129–137.
- U. Kohlenbach, Some Logical Metatheorems With Applications in Functional Analysis, Trans. Amer. Math. Soc. 357 (2005), 89–128.
- M.A. Khamsi, A.R. Khan, Inequalities in Metric Spaces With Applications, Nonlinear Anal.: Theory Meth. Appl. 74 (2011), 4036–4045. https://doi.org/10.1016/j.na.2011.03.034.
- H.K. Xu, Inequalities in Banach Spaces With Applications, Nonlinear Anal.: Theory Meth. Appl. 16 (1991), 1127– 1138. https://doi.org/10.1016/0362-546x(91)90200-k.
- R. Espínola, P. Lorenzo, A. Nicolae, Fixed Points, Selections and Common Fixed Points for Nonexpansive-Type Mappings, J. Math. Anal. Appl. 382 (2011), 503–515. https://doi.org/10.1016/j.jmaa.2010.06.039.
- T. Suzuki, Fixed Point Theorems and Convergence Theorems for Some Generalized Nonexpansive Mappings, J. Math. Anal. Appl. 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023.
- P. Chuadchawna, A. Farajzadeh, A. Kaewcharoen, Convergence Theorems and Approximating Endpoints for Multivalued Suzuki Mappings in Hyperbolic Spaces, J. Comput. Anal. Appl. 28 (2020), 903–916.
- W.R. Mann, Mean Value Methods in Iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510. https://doi.org/10.1090/s0002-9939-1953-0054846-3.
- S. Ishikawa, Fixed Points by a New Iteration Method, Proc. Amer. Math. Soc. 44 (1974), 147–150.
- M.A. Noor, New Approximation Schemes for General Variational Inequalities, J. Math. Anal. Appl. 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042.
- K. Ullah, J. Ahmad, M. Arshad, M. de la Sen, M.S.U. Khan, Approximating Stationary Points of Multivalued Generalized Nonexpansive Mappings in Metric Spaces, Adv. Math. Phys. 2020 (2020), 9086078. https://doi.org/10.1155/2020/9086078.